May 2011
Synthesis of Monoclinic and Cubic ZrO2 Nanoparticles
1419
16S. Jiang, G. C. Stangle, V. R. W. Amarakoon, and W. A. Schulze, ‘‘Synthesis
of Yttria-Stabilized Zirconia Nanoparticles by Decomposition of Metal Nitrates
Coated on Carbon Powder,’’ J. Mater. Res., 11 [9] 2318–24 (1996).
17H. Kondo, T. Sekino, N. Tanaka, T. Nakayama, T. Kusunose, and
K. Niihara, ‘‘Mechanical and Magnetic Properties of Novel Yttria-Stabilized
Tetragonal Zirconia/Ni Nanocomposite Prepared by the Modified Internal
Reduction Method,’’ J. Am. Ceram. Soc., 88 [6] 1468–73 (2005).
justification of the above argument shows that the basic pH
value of 13 has a positive effect on particle size reduction.
Summary
18J. Joo, T. Yu, Y. W. Kim, H. M. Park, F. Wu, J. Z. Zhang, and T. Hyeon,
‘‘Multi-Gram Scale Synthesis and Characterization of Monodisperse Tetragonal
Zirconia Nanocrystals,’’ J. Am. Chem. Soc., 125, 6553–57 (2003).
Nonstabilized monoclinic and sodium stabilized cubic zirconia
are synthesized from raw zircon sand using a chemical extrac-
tion process followed by a ball mill-aided precipitation route.
Detailed characterization using XRD and EDS revealed that the
sample synthesized at pH 7 affords nonstabilized monoclinic
zirconia, whereas pH 13 affords sodium-stabilized cubic zir-
conia. This method yields monoclinic zirconia with chemical
purity of 97.6% and cubic zirconia with a chemical purity of
92.5%. The pH value of precipitation is the key controlling fac-
tor for the crystalline phase and particle size of the product.
Although increasing calcination temperature can induce growth
of crystals, which leads to higher particle size. The stable
m-ZrO2 and c-ZrO2 can be synthesized in a large quantity un-
der neutral and strong basic conditions with an average size of
6473 and 3973 nm, respectively. The specific surface area of m-
ZrO2 was 126 m2/g for the powder synthesized at a pH value of
7, whereas the powder synthesized at pH 13 yields c-ZrO2 of a
specific surface area of 227 m2/g. It is observed that precipitation
yields aggregated particles that are disaggregated by a ball-
milling process. It is worth noticing that the ball mill process
develops reduced particle size with spherical morphology. The
results are useful for understanding the surface chemistry and
properties of hydrous zirconia precipitated at different pH val-
ues and its design for the synthesis of nonstabilized m-ZrO2 and
sodium stabilized c-ZrO2 nanoparticles. The effect of planetary
ball milling on particle size, surface area, and morphology has
been addressed. It may be noted that this method has some ad-
vantages such as quite simple to conduct and easy scaling-up the
process to commercial production rates than many of the other
commercially available methods. This process has the potential
to be inexpensive when this reaction scheme is developed for
large-scale tonnage production of nanosized zirconia particles.
The major limitation of this process, at present, is the residual
sodium in the material.
19S. X. Zhou, G. Garnweitner, M. Niederberger, and M. Antonietti, ‘‘Disper-
sion Behavior of Zirconia Nanocrystals and their Surface Functionalization with
Vinyl Group-Containing Ligands,’’ Langmuir, 23 [18] 9178–87 (2007).
20G. Pang, S. Chen, Y. Zhu, O. Palchik, Y. Koltypin, A. Zaban, and A. Ge-
danken, ‘‘Preparation and Characterization of Monodispersed YSZ nanocrys-
tals,’’ J. Phys. Chem. B, 105, 4647–52 (2001).
21J. Y. Dai, H. C. Ong, and R. P. H. Chang, ‘‘Structural Properties of Yttria-
Stabilized Zirconia Thin Films Grown by Pulsed laser Deposition,’’ J. Mater. Res.,
14, 1329–36 (1999).
22Y. Li, W. Chi, S. Sampath, A. Goland, H. Herman, J. Ilavsky, and A. Allen,
‘‘Process Controlled Plasma Sprayed Yttria Stabilized Zirconia Coatings: New insights
from ultra small angle X-ray scattering,’’ J. Am. Chem. Soc., 92 [2] 491–500 (2009).
23G. Vaivars, J. Shan, G. Gericke, and V. Linkov, ‘‘Phosphorized Zirconium
Oxide Nanoparticles,’’ Appl. Organometal. Chem., 19, 1096–100 (2005).
24A. Mondal and S. Ram, ‘‘Monolithic t-ZrO2 Nanopowder Through
a
ZrO(OH)2.xH2O Polymer Precursor,’’ J. Am. Ceram. Soc., 87 [12] 2187–94 (2004).
25C. Chen, X. Yang, and A. S. T. Chiang, ‘‘An Aqueous Process for the Pro-
duction of Fully Dispersible t-ZrO2 Nanocrystals,’’ J. Taiwan Ins. Chem. Eng., 40
[3] 296–301 (2009).
26R. Kreiter, M. D. A. Rietkerk, B. C. Bonekamp, H. M. Van Veen, V. G.
Kessler, and J. F. Vente, ‘‘Sol–gel Routes for Microporous Zirconia and Titania
Membranes,’’ J. Sol–Gel Sci. Technol., 48, 203–11 (2008).
27F. A. T. Guimaraes, K. L. Silva, V. Trombini, J. J. Pierri, J. A. Rodrigues, R.
Tomasi, and E. A. Pallone, ‘‘Correlation Between Microstructure and Mechanical
Properties of Al2O3/ZrO2 Nanocomposites,’’ Ceram. Int., 35 [2] 741–45 (2009).
28A. H. Heuer and L. H. Schoenlein, ‘‘Thermal Shock Resistance of Mg-PSZ,’’
J. Mater. Sci., 20, 421–27 (1985).
29G. Trolliard, R. Benmechta, and D. Mercurio, ‘‘Pure Orthorhombic Zirconia
Islands Grown on Single-Crystal Sapphire Substrates,’’ Acta. Materiall., 55 [17]
6011–18 (2007).
30J. R. Casanova, I. O. Fabregas, D. G. Lamas, N. E. W. Reca, G. E. Lascalea,
R. Kempf, A. F. Craievichd, and C. V. Santillie, ‘‘Structure of Nanoporous Zir-
conia-Based Powders Synthesized by Different Gel-Combustion Routes,’’ J. Appl.
Cryst., 40, s147–152 (2007).
31X. M. Wang, G. Lorimer, and P. Xiaow, ‘‘Solvothermal Synthesis and pro-
cessing of Yttria-stabilized Zirconia Nanopowder,’’ J. Am. Ceram. Soc., 88 [4]
809–16 (2005).
32C. Tallon, R. Moreno, and M. I. Nieto, ‘‘Synthesis of ZrO2 Nanoparticles by
Freeze Drying,’’ Int. J. Appl. Ceram. Technol., 6 [2] 324–34 (2009).
33A. Benedetti, G. Fagherazzi, and F. Pinna, ‘‘Preparation and Structural Char-
acterization of Ultrafine Zirconia Powders,’’ J. Am. Ceram. Soc., 72 [3] 467–69 (1989).
34M. K. Mishra, B. Tyagi, and R. V. Jasra, ‘‘Effect of Synthetic Parameters on
Structural, Textural and catalytic Properties of Nanocrystalline Sulfated Zirconia
Prepared by Sol-gel Technique,’’ Ind. Eng. Chem. Res., 42, 5727–36 (2003).
35B. Tyagi, K. Sidhpuria, B. Shaik, and R. V. Jasra, ‘‘Synthesis of Nanocrys-
talline Zirconia Using sol–gel and Precipitation Techniques,’’ Ind. Eng. Chem.
Res., 45, 8643–50 (2006).
References
1T. Schmidt, M. Mennig, and H. Schmidt, ‘‘New Method for the Preparation
and Stabilization of Nanoparticulate t-ZrO2 by a Combined Sol–Gel and Solvo-
thermal Process,’’ J. Am. Ceram. Soc., 90 [5] 1401–05 (2007).
2R. Jossen, R. Mueller, S. E. Pratsinis, M. Watson, and M. K. Akhtar, ‘‘Mor-
phology and Composition of Spray-Flame-Made Yttria-Stabilized Zirconia Nano-
particles,’’ Nanotechnology, 16, S609–17 (2005).
36M. Z. C. Hu, R. D. E. Hunt, A. Payzant, and C. R. Hubbard, ‘‘Nanocrys-
tallization and Phase Transformation in Monodispersed Ultrafine Zirconia Par-
ticles from Various Homogeneous Precipitation Methods,’’ J. Am. Ceram. Soc., 82
[9] 2313–20 (1999).
3A. R. Pebler, ‘‘Preparation of Small Particle Stabilized Zirconia by Aerosol
Pyrolysis,’’ J. Mater. Res., 5, 680–2 (1990).
4J. Kaspar, P. Fornasiero, and M. Graziani, ‘‘Use of CeO2-Based Oxides in the
Three-Way Catalysis,’’ Catal. Today, 50, 285–98 (1999).
37F. C. M. Woudenberg, W. F. C. Sager, J. E. Ten Elshof, and H. Verweij,
‘‘Nanostructured Dense ZrO2 Thin Films from Nanoparticles Obtained by Emul-
sion Precipitation,’’ J. Am. Ceram. Soc., 87 [8] 1430–35 (2004).
38G. Dell Agli and G. Mascolo, ‘‘Hydrothermal Synthesis of ZrO2–Y2O3 Solid
Solutions at Low Temperature,’’ J. Eur. Ceram. Soc., 20 [2] 139–45 (2000).
39H. Althues and S. Kasel, ‘‘Sulfated Zirconia Nanoparticles Synthesized in
Reverse Microemulsions—Preparation and Catalytic Properties,’’ Langmuir, 18,
7428–35 (2002).
5J. Kaspar and P. Fornasiero, ‘‘Nanostructured Materials for Advanced Auto-
motive De-Pollution Catalysts,’’ J. Solid State Chem., 171, 19–29 (2003).
6P. Canton, G. Fagherazzi, R. Frattini, and P. Riello, ‘‘Stabilization of Cubic
Na-Modified ZrO2: a neutron diffraction study,’’ J. Appl. Cryst., 32, 475–80
(1999).
7J. Nawrocki, C. J. Dunlap, P. W. Carr, and J. A. Blackwell, ‘‘New Materials
for Biotechnology: chromatographic stationary phases based on zirconia,’’ Bio-
technol. Progr., 10, 561–73 (1994).
40J. Grabis, A. Kuzjukevics, D. Rasmane, M. Morgensen, and S. Linderoth,
‘‘Preparation of Nanocrystalline YSZ Powders by Plasma Technique,’’ J. Mater.
Sci., 33, 723–28 (1998).
8J. Nawrocki, M. Rigney, A. McCormick, and P. W. Carr, ‘‘Chemistry of Zir-
conia and its Use in Chromatography,’’ J. Chromatogr. A., 657, 229–82 (1993).
9Y. Mizutani, K. Hisada, K. Ukai, H. Sumi, M. Yokoyama, Y. Nakamura, and
O. Yamamoto, ‘‘From Rare-Earth Doped Zirconia to 1 kW Solid Oxide Fuel Cell
System,’’ J. Alloys Comp., 408–12, 518–24 (2006).
41G. Pang, E. Sominska, H. Colfen, Y. Mastai, S. Avivi, Y. Koltypin, and A.
Gedanken, ‘‘Preparing a Stable Colloidal Solution of Hydrous YSZ by Sonicat-
ion,’’ Langmuir, 17 [11] 3223–26 (2001).
42J. Adam, R. Drumm, G. Klein, and M. Veithw, ‘‘Milling of Zirconia Nano-
particles in a Stirred Media Mill,’’ J. Am. Ceram. Soc., 91 [9] 2836–43 (2008).
43H. L. Gilbert, C. Q. Morrison, A. Jones, and A. W. Henderson, ‘‘Caustic Soda
Fusion of Zirconium Ores’’; pp. 192–194 in E. Ryshkewitch’s Oxide
Ceramics. Academic Press, San Diego, CA, 1960.
10J. M. Ralph, A. C. Schoeler, and M. Krumpelt, ‘‘Materials for Lower Tem-
perature Solid Oxide Fuel Cells,’’ J. Mater. Sci., 36, 1161–72 (2001).
11W. C. Maskell, ‘‘Progress in the Development of Zirconia Gas Sensors,’’ Solid
State Ionics, 134, 43–50 (2000).
12J. Riegel, H. Neumann, and H. M. Wiedenmann, ‘‘Exhaust Gas Sensors for
Automotive Emission Control,’’ Solid State Ionics, 152, 783–800 (2002).
13J. H. Lee, ‘‘Review on Zirconia Air-Fuel Ratio Sensors for Automotive
Applications,’’ J. Mater. Sci., 38, 4247–57 (2003).
44P. Reynen, H. Bastius, B. Pavlovski, and D. von Mallindkrodt, ‘‘Production
of High-Purity Zirconia by Hydrothermal Decomposition of Zircon (ZrSiO4)’’;
pp. 464–75 in Science and Technology of Zirconia, Edited by A. H. Heuer, and
L. W. Hobbs. American Ceramic Society, Columbus, OH, 1981.
45E. V. Dudnik, Z. A. Zaitseva, A. V. Shevchenko, and and L. M. Lopato,
‘‘Methods for Preparing Fine Zirconia Powders,’’ Pow. Met. Metal Ceram., 32 [7]
581–86 (1993).
14T. Chraska, A. H. King, and C. C. Berndt, ‘‘On the Size-Dependent Phase
Transformation in Nanoparticulate Zirconia,’’ Mater. Sci. & Eng. A., 286, 169–78
(2000).
15S. Raghavan, H. Wang, R. B. Dinwiddie, W. D. Porter, R. Vaen, D. Stover,
and M. J. Mayo, ‘‘Ta2O5/Nb2O5 and Y2O3 Co-Doped Zirconias for Thermal
Barrier Coatings,’’ J. Am. Ceram. Soc., 87 [3] 431–37 2004.
46R. Ramamoorthy, D. Sundararaman, and R. Ramasamy, ‘‘X-ray Diffraction
Study of Phase Transformation in Hydrolyzed Zirconia Nanoparticles,’’ J. Eur.
Ceram. Soc., 19, 1827–33 (1999).