RSC Advances
Paper
using Cassytha liformis L. extract without use of dangerous and
toxic reagents or capping agent and surfactant.
8 M. Mansoob Khan, J. Lee and M. H. Cho, Ind. Eng. Chem.
Res., 2014, 20, 1584.
9 N. Gupta, H. P. Singh and R. K. Sharma, J. Mol. Catal. A:
Chem., 2011, 335, 248.
Catalyst recyclability
10 S. Li, H. Li, J. Liu, H. Zhang, Y. Yang, Z. Yang, L. Wang and
B. Wang, Dalton Trans., 2015, 44, 9193.
11 K. B. Narayanan and H. H. Park, Korean J. Chem. Eng., 2015,
32, 1273.
12 Z. Wang, S. Zhai, J. Lv, H. Qi, W. Zheng, B. Zhai and Q. An,
RSC Adv., 2015, 5, 74575.
13 H. R. Pouretedal, A. Norozi, M. H. Keshavarz and
A. Semnani, J. Hazard. Mater., 2009, 162, 674.
14 C. Karunakaran, G. Abiramasundari, P. Gomathisankar,
G. Manikandan and V. Anandi, J. Colloid Interface Sci.,
2010, 352, 68.
15 B. K. Ghosh, S. Hazra, B. Naik and N. N. Ghosh, Powder
Technol., 2015, 269, 371.
16 G. N. Panin, A. N. Baranov, Y. J. Oh and T. W. Kang, Curr.
Appl. Phys., 2004, 4(6), 647.
The recyclability of the catalysts is one of the advantages of
heterogeneous catalysts. The stability and reusability of the Cu/
MgO nanocomposite was tested in the reduction of CR with
NaBH4. The Cu/MgO nanocomposite can be separated from the
reaction mixture by mild centrifugation and washed with
distilled water several times, dried and then reused at least six
times without signicant loss of catalytic activity. The high
activity of catalyst conrms the high stability of Cu/MgO
nanocomposite under the reaction conditions. As shown in
TEM, FESEM, FT-IR images and EDS analysis of the recycled
catalyst (Fig. 12–15), no obvious change in structure, chemical
composition, morphology and size of NPs were observed. The
XRD patterns before and aer the reaction revealed that the Cu/
MgO nanocomposite retained its crystallinity throughout.
17 G. N. Panin, A. N. Baranov, Y. J. Oh, T. W. Kang and
T. W. Kim, J. Cryst. Growth, 2005, 279(3–4), 494.
18 H. S. Jung, J. K. Lee and M. Nastasi, Langmuir, 2005, 21(23),
10332.
19 T. Takada, Y. Hayase, Y. Tanaka and T. Okamoto, IEEE Trans.
Dielectr. Electr. Insul., 2008, 15(1), 1070.
20 N. R. Dhineshbabu, G. Karunakaran, R. Suriyaprabha,
P. Manivasakan and V. Rajendran, Nano-Micro Lett., 2014,
6(1), 46.
21 G. Khade, M. Suwarnkar, N. Gavade and K. Garadkar, J.
Mater. Sci.: Mater. Electron., 2015, 26, 3309.
22 J. Choi, D. Reddy, M. Islam, B. Seo, S. Joo and T. Kim, Appl.
Surf. Sci., 2015, 358, 159.
Conclusion
The green synthesis of copper nanoparticles using Cassytha
liformis L. extract provides a rapid and simple route for the
preparation of Cu/MgO nanocomposite. The avonoids present
in extract of Cassytha liformis L. act as both reducing and
capping/stabilizing agents. The synthesized Cu and Cu/MgO
nanocomposite were characterized by XRD, SEM, EDS, TEM,
FT-IR and UV-vis spectroscopic techniques. The catalyst
exhibits high catalytic activity for the reduction of 2,4-DNPH, 4-
NP, MB and CR by using NaBH4 in aqueous medium at room
temperature. The signicant advantages of this methodology
are elimination of hazardous materials, short reaction time,
mild reaction conditions and simple work-up procedure.
23 L. Z Fekri, M. Nikpassand and K. H Pour, Curr. Org. Synth.,
2015, 12, 76.
24 Z. Issaabadi, M. Nasrollahzadeh and S. M. Sajadi, J. Cleaner
Prod., 2017, 142, 3584.
Conflicts of interest
25 A. R. Vartooni, M. Nasrollahzadeh and M. Alizadeh, J. Alloys
Compd., 2016, 680, 309.
There are no conicts to declare.
26 N. Muhd Julkapli and S. Bagheri, Rev. Inorg. Chem., 2016, 36,
1.
Acknowledgements
27 M. N. Nadagouda and R. S. Varm, Green Chem., 2008, 10, 859.
28 J. Y. Song and B. S. Kim, Bioprocess Biosyst. Eng., 2009, 32, 79.
29 H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. Pyne and
A. Misra, Colloids Surf., A, 2009, 348, 212.
30 A. K. Mittal, Y. Chisti and U. C. Banerjee, Biotechnol. Adv.,
2013, 31, 346.
We gratefully acknowledge the Iranian Nano Council and the
University of Qom for the support of this work.
References
1 R. Dai, J. Chen, J. Lin, S. Xia, S. Chen and Y. Deng, J. Hazard.
Mater., 2009, 170, 141.
2 J. C. Spain, Annu. Rev. Microbiol., 1995, 49, 523.
31 M. Sathishkumar, K. Sneha, S. W. Won, C.-W. Cho, S. Kim
and Y.-S. Yun, Colloids Surf., B, 2009, 73, 332.
3 F. Han, V. Kambala, M. Srinivasan, D. Rajarathnam and 32 M. Bordbar, RSC Adv., 2017, 7, 180.
R. Naidu, Appl. Catal., A, 2009, 359, 25.
33 M. Bordbar, Z. Shari-Zarchi and B. Khodadadi, J. Sol-Gel
4 M.
Nasrollahzadeh, M.
Atarod, B. Jaleh and
Sci. Technol., 2017, 81, 724.
M. Gandomirouzbahani, Ceram. Int., 2016, 42, 8587.
5 V. Vidhu and D. Philip, Micron, 2014, 56, 54.
34 T. P. T. Cushnie and A. J. Lamb, Int. J. Antimicrob. Agents,
2005, 26, 343.
6 Y. Choi, H. S. Bae, E. Seo, S. Jang, K. H. Park and B.-S. Kim, J. 35 L. M. Perry, Medicinal plants of east and southeast asia:
Mater. Chem., 2011, 21, 15431.
attributed properties and uses, MIT Press, Cambridge, MA,
7 Z. Xiong, L. L. Zhang, J. Ma and X. S. Zhao, Chem. Commun.,
2010, 46, 6099.
1980, p. 95.
3734 | RSC Adv., 2018, 8, 3723–3735
This journal is © The Royal Society of Chemistry 2018