2320
Y. Terada et al.
SHORT PAPER
IR (KBr): 3315, 1637 cm–1.
tivalent metal salt hydrates will be discussed in the near
future.
1H NMR (500 MHz, CDCl3): d = 0.9 (6 H, br t), 1.3 (42 H, br t),
1.5–1.6 (4 H, m), 2.1 (2 H, t, J = 7.5, 8.3 Hz), 3.2 (2 H, dd, J = 6.9
Hz), 5.4 (1 H, br s).
13C NMR (125 MHz, CDCl3): d = 14.2, 22.7, 22.8, 26.0, 27.0, 29.3,
29.3, 29.4, 29.5, 29.5, 29.6, 29.7, 29.8, 29.9, 31.9, 32.0, 37.1, 39.6,
173.1.
Metal salts and all acids and amines used in this study were obtained
commercially and used without further purification. The product
yields were analyzed by gas chromatography using a Shimadzu Gas
Chromatograph 14A, Ultra-1 (25 m × 0.3 mm; 0.33 mm thick layer)
1
capillary column equipped with an FID. H and 13C NMR spectra
Anal. Calcd for C24H49NO: C, 79.36; H, 13.56; N, 3.31. Found: C,
79.36; H, 13.6; N, 3.31.
were recorded at 500 and 125 MHz, respectively, on a JEOL ECA-
500 NMR spectrometer. IR spectra were recorded on a Nexus 470
(Thermo Nicolet) FT-IR spectrometer using KBr discs. Elemental
analyses of all amides were performed at the Center for Organic
Elemental Microanalysis, Kyoto University.
Acknowledgment
Part of this work was financially supported by a Grant-in-Aid for
Scientific Research (B) 19310060, the Japan Society for the Promo-
tion of Science (JSPS).
Amidation of Long-Chain Carboxylic Acids with Amines; Gen-
eral Procedure
The amidation was carried out in a single-neck, round-bottom flask
(100 mL) equipped with a Teflon-coated magnetic stirring bar and
a Dean–Stark apparatus. Equimolar amounts of the substrates (long-
chain primary acid and amine; 6 mmol each) and FeCl3·6H2O (0.12
mmol) in solvent (benzene, toluene, m-xylene, mesitylene; 40 mL)
were charged into the flask and the mixture was heated to reflux
temperature with continuous removal of H2O generated from the re-
action. After 6 h or 24 h, the resulting reaction mixture was cooled
to r.t. and an aliquot of the reaction mixture was subjected to analy-
sis by GC in order to determine the conversion and product yield
(biphenyl as a standard). The solvent was removed in vacuo from
the reaction mixture and the amide product was extracted with
CHCl3. The amides were purified by column chromatography using
silica gel (0.063–0.2 mm; CHCl3–EtOAc, 10:1) to give the pure
product.
References
(1) (a) Lower, E.-S. Pigm. Resin Technol. 1992, 21, 8.
(b) Lower, E.-S. Pigm. Resin Technol. 1993, 22, 19.
(2) Benz, G. In Comprehensive Organic Syntheses, Vol. 6;
Trost, R. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991,
Chap. 2.3, 381–417.
(3) (a) Coleman, G. M.; Alvarado, A. M. Org. Synth. Coll. Vol.
I; John Wiley & Sons: London, 1948, 3. (b) Walter, M.;
Besendorf, H.; Schnider, O. Helv. Chim. Acta 1961, 44,
1546.
(4) Cherbuliez, E.; Landort, F. Helv. Chim. Acta 1946, 29, 1438;
cation exchange.
(5) Mitchell, J. A.; Reid, E. E. J. Am. Chem. Soc. 1931, 53, 1879.
(6) (a) Ishihara, K.; Ohara, S.; Yamamoto, H. Macromolecules
2000, 33, 3511. (b) Ishihara, K.; Kondo, S.; Yamamoto, H.
Synlett 2001, 1371. (c) Ishihara, K.; Yamamoto, H. In
Handbook of Fluorous Chemistry; Gladysz, J. A.; Curran, D.
P.; Horvath, I. T., Eds.; Wiley-VCH: Weinheim, 2004, 382–
386. (d) Maki, T.; Ishihara, K.; Yamamoto, H. Org. Lett.
2005, 7, 5043. (e) Maki, T.; Ishihara, K.; Yamamoto, H.
Org. Lett. 2005, 7, 5047. (f) Maki, T.; Ishihara, K.;
Yamamoto, H. Org. Lett. 2006, 8, 1431. (g) Maki, T.;
Ishihara, K.; Yamamoto, H. Tetrahedron 2007, 63, 8645.
(7) Ishihara, K.; Yamamoto, H. In Handbook of Fluorous
Chemistry; Gladysz, J. A.; Curran, D. P.; Horvath, I. T.,
Eds.; Wiley-VCH: Weinheim, 2004, 350–359.
N-Octylhexadecanamide
Mp 78–79 °C.
IR (KBr): 3318, 1637 cm–1.
1H NMR (500 MHz, CDCl3): d = 0.9 (6 H, br t), 1.2 (34 H, br t),
1.5–1.6 (4 H, m), 2.1 (2 H, t, J = 7.4 Hz), 3.2 (2 H, dd, J = 6.9, 7.5
Hz), 5.4 (1 H, br s).
13C NMR (125 MHz, CDCl3): d = 14.0, 22.8, 26.0, 27.0, 29.4, 29.5,
29.6, 29.6, 29.7, 29.7, 29.8, 174.7.
Anal. Calcd for C28H57NO: C, 78.40; H, 13.43; N, 3.81. Found: C,
78.22; H, 13.29; N, 3.74.
(8) (a) Lang, A.; Nöth, H.; Thomann-Albach, M. Chem. Ber./
Recl. 1997, 130, 363. (b) Collum, D. B.; Chen, S.; Ganem,
B. J. Org. Chem. 1978, 43, 4393. (c) Latta, R.; Springsteen,
G.; Wang, B. Synthesis 2001, 1611. (d) Tang, P. Org. Synth.
2005, 81, 262. (e) Arnold, K.; Davies, B.; Giles, R. L.;
Grosjean, C.; Smith, G. E.; Whiting, A. Adv. Synth. Catal.
2006, 348, 813.
(9) (a) Mantri, K.; Komura, K.; Sugi, Y. Synthesis 2005, 1939.
(b) Mantri, K.; Komura, K.; Sugi, Y. Green Chem. 2005, 7,
677. (c) Mantri, K.; Nakamura, R.; Komura, K.; Sugi, Y.
Chem. Lett. 2005, 34, 1502.
N-Decylhexadecanamide
Mp 82–83 °C.
IR (KBr): 3318, 1637 cm–1.
1H NMR (500 MHz, CDCl3): d = 0.9 (6 H, br t), 1.3 (38 H, br t),
1.5–1.6 (4 H, m), 2.2 (2 H, t, J = 7.6 Hz), 3.2 (2 H, dd, J = 7.5, 7.6
Hz), 5.4 (1 H, br s).
13C NMR (125 MHz, CDCl3): d = 14.2, 22.8, 26.0, 27.0, 29.4, 29.5,
29.6, 29.6, 29.7, 29.7, 29.8, 32.0, 32.0, 37.1, 40.0, 173.1.
Anal. Calcd for C26H53NO: C, 78.92; H, 13.50; N, 3.54. Found: C,
78.97; H, 13.59; N, 3.52.
(10) Baes, C. F. Jr.; Mesmer, R. E. In The Hydrolysis of Cations;
John Wiley: New York, 1976.
N-Dodecylhexadecanamide
Mp 86–87 °C.
Synthesis 2008, No. 15, 2318–2320 © Thieme Stuttgart · New York