9306
J . Org. Chem. 1998, 63, 9306-9313
P h otoch r om ism of Dith ien yleth en es In clu d ed in Cyclod extr in s
Michinori Takeshita,*,† Nobuo Kato,‡ Susumu Kawauchi,§ Tatsuya Imase,§
J unji Watanabe,§ and Masahiro Irie*,†
Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, and
CREST, J apan Science and Technology Corporation, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581,
J apan, Institute of Advanced Material Study, Kyushu University, Kasuga, Fukuoka 816-8580, J apan,
and Faculty of Engineering, Tokyo Institute of Technology, Ookayama 2-10-1,
Meguro-ku, Tokyo 152-8552, J apan
Received J une 22, 1998
The effect of inclusion of diarylethenes in cyclodextrin cavities on cyclization quantum yields and
on circular dichroism (CD) spectral changes by photoirradiation was studied. The addition of â-
and γ-cyclodextrins to an aqueous solution of the open-ring form of 2,2′-dimethyl-3,3′-(perfluoro-
cyclopentene-1,2-diyl)bis(benzo[b]thiophene-6-sulfonate) (1a ) increased the ratio of the antiparallel
conformation. The enrichment of antiparallel conformation caused an increase in the photocy-
clization quantum yield of 1a . The CD spectral intensity of the mixtures of 1a or 2,2′,4,4′-
tetramethyl-3,3′-(perfluorocyclopentene-1,2-diyl)bis(thiophen-5-yl-(phenyl-4-sulfonate)) (2a ) and
cyclodextrins in aqueous solution increased with the increasing concentration of cyclodextrins. The
induced CD spectrum of 1 in â-cyclodextrin reversibly changed from negative to positive by UV
irradiation. The spectral change was attributed to the change in the direction of transition moment
of 1 in the cavity.
Photochromic compounds are classified into two cat-
egories, thermally reversible and irreversible com-
pounds.1 Azobenzenes and spirobenzopyrans belong to
the former and furylfulgides and dithienylethenes to the
latter. The thermally irreversible photochromic com-
pounds are potentially applicable to various types of
optoelectronic devices, such as optical memory media2
and photooptical switching devices.3 Among the ther-
mally irreversible compounds, diarylethenes having het-
erocyclic aryl groups are promising candidates for the
practical applications because of their fatigue-resistant
characteristic.4 The photochromic reaction of diarylethenes
is based on the reversible hexatriene-cyclohexadiene-
type photocyclization as shown in Figure 1. The open-
ring form of the diarylethene has two conformations,
parallel and antiparallel. The photocyclization can pro-
ceed only from the antiparallel conformation, while the
parallel conformation is photochemically inactive.4 The
existence of the parallel conformation limits the quantum
yield for ring-closure reaction.5 One of the approaches
to increase the cyclization quantum yield is to increase
the ratio of the antiparallel conformation. Inclusion of
the diarylethene into a microcavity, such as cyclodextrins,
favors the antiparallel conformation.6
F igu r e 1. Reaction scheme of diarylethene with five-
membered heterocyclic aryl groups.
Circular dichroism (CD) spectral changes accompany-
ing photochromic reactions have been reported7 for
dissymmetrical alkenes,8 bilirubin-IIIR,9 liquid crystals,10
[4n]annulenes,11 fulgides,12 spiropyranes,13 and dithie-
(6) Takeshita, M.; Choi, C.; Irie, M. J . Chem. Soc., Chem. Commun.
1997, 2265.
(7) For a review, see: Feringa, B. L.; J ager, W. F.; de Lange, B.
Tetrahedron 1993, 49, 8267.
† Graduate School of Engineering, Kyushu University, and CREST,
J apan Science and Technology Corporation.
(8) (a) Feringa, B. L.; J ager, W. F.; de Lange, B.; Meijer, E. W. J .
Am. Chem. Soc. 1991, 113, 5468. (b) Feringa, B. L.; J ager, W. F.; de
Lange, B. Tetrahedron Lett. 1992, 33, 2887. (c) Feringa, B. L.; J ager,
W. F.; de Lange, B. J . Chem. Soc., Chem. Commun. 1993, 288. (d)
J ager, W. F.; de J ong, J . C.; de Lange, B.; Huck, N. P. M.; Meetsma,
A.; Feringa, B. L. Angew. Chem., Int. Ed. Engl. 1995, 34, 348. (e) Huck,
N. P. M.; Feringa, B. L. J . Chem. Soc., Chem. Commun. 1995, 1095.
(f) Feringa, B. L.; Huck, N. P. M.; van Doren, H. A. J . Am. Chem. Soc.
1995, 117, 9929.
‡ Institute of Advanced Material Study, Kyushu University.
§ Tokyo Institute of Technology.
(1) For a review, see: Du¨rr, H.; Bouas-Laurent, H. Photochromism,
Molecules and Systems; Elsevier: Amsterdam, 1990.
(2) For example, see: (a) Irie, M. In Photoreactive Materials for
Ultrahigh-Density Optical Memory; Irie, M., Ed.; Elsevier: Amsterdam,
1994; p 1. (b) Tatezono, F.; Harada, T.; Shimizu, Y.; Ohara, M.; Irie,
M. J pn. J . Appl. Phys. 1993, 32, 3987.
(3) (a) Tanio, N.; Irie, M. J pn. J . Appl. Phys. 1994, 33, 1550. (b)
Tsujioka, T.; Kume, M.; Irie, M. Ibid. 1996, 35, 4353. (c) Hoshino, M.;
Ebisawa, F.; Yoshida, T.; Sukegawa, K. Ibid. 1997, 105, 75.
(4) For reviews, see: (a) Irie, M.; Uchida, K. Bull. Chem. Soc. J pn.
1998, 71, 985. (b) Reference 2a.
(5) Irie, M.; Miyatake, O.; Uchida, K.; Eriguchi, T. J . Am. Chem.
Soc. 1994, 116, 9894.
(9) Agati, G.; McDonagh, A. F. J . Am. Chem. Soc. 1995, 117, 4425.
(10) Suarez, M.; Schuster, G. B. J . Am. Chem. Soc. 1995, 117, 6732.
(11) Briquet, A. A. S.; Uebelhart, P.; Hansen, H.-J . Helv. Chim. Acta
1996, 79, 2282.
(12) Yokoyama, Y.; Uchida, S.; Yokoyama, Y.; Sugawara, Y.; Kurita,
Y. J . Am. Chem. Soc. 1996, 118, 3100.
(13) Eggers, L.; Buss, V. Angew. Chem., Int. Ed. Engl. 1997, 36, 881.
10.1021/jo981199p CCC: $15.00 © 1998 American Chemical Society
Published on Web 11/20/1998