Wang et al.
Report
[11] Park, J.-S.; Kataoka, K. Comprehensive and Accurate Control of Thermo-
sensitivity of Poly(2-alkyl-2-oxazoline)s via Well-Defined Gradient or
Random Copolymerization. Macromolecules 2007, 40, 3599-3609.
[12] Park, J. S.; Akiyama, Y.; Winnik, F. M.; Kataoka, K. Versatile synthesis of
end-functionalized thermosensitive poly(2-isopropyl-2-oxazolines). Mac-
romolecules 2004, 37, 6786-6792.
[13] Liu, L.; Yin, L.; Bian, H.; Zhang, N. Polymeric nanoparticles of
poly(2-oxazoline), tannic acid and doxorubicin for controlled release and
cancer treatment. Chin. Chem. Lett. 2020, 31, 501-504
sponse at body temperature. J. Polym. Sci. Pol. Chem. 2013, 51,
1893-1898.
[32] Gu, L.; Qin, Y.; Gao, Y.; Wang, X.; Wang, F. Hydrophilic CO2-based bi-
odegradable polycarbonates: Synthesis and rapid thermo-responsive
behavior. J. Polym. Sci. Pol. Chem. 2013, 51, 2834-2840.
[33] Wang, Y.; Darensbourg, D. J. Carbon dioxide-based functional polycar-
bonates: Metal catalyzed copolymerization of CO2 and epoxides. Coord.
Chem. Rev. 2018, 372, 85-100.
[34] Cao, H.; Wang, X. Carbon Dioxide Copolymer From Delicate Metal Cata-
lyst: New Structure Leading to Practical Performance. In Synthetic Poly-
mer Chemistry: Innovations and Outlook, RSC Publishing, 2020, pp.
197-242
[14] Yang, J.; van Lith, R.; Baler, K.; Hoshi, R. A.; Ameer, G. A. A thermorespon-
sive biodegradable polymer with intrinsic antioxidant properties. Biom-
acromolecules 2014, 15, 3942-3952.
[15] Swanson, J. P.; Martinez, M. R.; Cruz, M. A.; Mankoci, S. G.; Costanzo, P. J.;
Joy, A. A coacervate-forming biodegradable polyester with elevated LCST
based on bis-(2-methoxyethyl) amine. Polym. Chem. 2016, 7, 4693-4702.
[16] Gupta, M. K.; Martin, J. R.; Werfel, T. A.; Shen, T.; Page, J. M.; Duvall, C. L.
Cell protective, ABC triblock polymer-based thermoresponsive hydrogels
with ROS-triggered degradation and drug release. J. Am. Chem. Soc. 2014,
136, 14896-14902.
[17] Thomas, A. W.; Kuroishi, P. K.; Perez-Madrigal, M. M.; Whittaker, A. K.;
Dove, A. P. Synthesis of aliphatic polycarbonates with a tuneable thermal
response. Polym. Chem. 2017, 8, 5082-5090.
[18] Li, Y.; Liu, S.; Zhao, X.; Wang, Y.; Liu, J.; Wang, X.; Lu, L. CO2-based am-
phiphilic polycarbonate micelles enable a reliable and efficient platform
for tumor imaging. Theranostics 2017, 7, 4689-4698.
[19] Zhu, Y.; Romain, C.; Williams, C. K. Sustainable polymers from renewable
resources. Nature 2016, 540, 354-362.
[35] Paddock, R. L.; Nguyen, S. T. Alternating copolymerization of CO2 and
propylene oxide catalyzed by Co-III(salen)/Lewis base. Macromolecules
2005, 38, 6251-6253.
[36] Dong, J.; Li, X.; Zhang, K.; Di Yuan, Y.; Wang, Y.; Zhai, L.; Liu, G.; Yuan, D.;
Jiang, J.; Zhao, D. Confinement of Aggregation-Induced Emission Molecu-
lar Rotors in Ultrathin Two-Dimensional Porous Organic Nanosheets for
Enhanced Molecular Recognition. J. Am. Chem. Soc. 2018, 140,
4035-4046.
[37] Han, T.; Yan, D.; Wu, Q.; Song, N.; Zhang, H.; Wang, D. Aggregation‐
Induced Emission: A Rising Star in Chemistry and Materials Science. Chin.
J. Chem. 2021, 39, 677-689.
[38] Leung, N. L.; Xie, N.; Yuan, W.; Liu, Y.; Wu, Q.; Peng, Q.; Miao, Q.; Lam, J.
W.; Tang, B. Z. Restriction of intramolecular motions: the general mecha-
nism behind aggregation-induced emission. Chemistry 2014, 20,
15349-15353.
[20] Kozak, C. M.; Ambrose, K.; Anderson, T. S. Copolymerization of carbon
dioxide and epoxides by metal coordination complexes. Coord. Chem. Rev.
2018, 376, 565-587.
[21] Klaus, S.; Lehenmeier, M. W.; Anderson, C. E.; Rieger, B. Recent advances
in CO2/epoxide copolymerization-New strategies and cooperative mech-
anisms. Coord. Chem. Rev. 2011, 255, 1460-1479.
[22] Grignard, B.; Gennen, S.; Jerome, C.; Kleij, A. W.; Detrembleur, C. Ad-
vances in the use of CO2 as a renewable feedstock for the synthesis of
polymers. Chem. Soc. Rev. 2019, 48, 4466-4514.
[23] Zhang, D.; Boopathi, S. K.; Hadjichristidis, N.; Gnanou, Y.; Feng, X. Met-
al-Free Alternating Copolymerization of CO2 with Epoxides: Fulfilling
"Green" Synthesis and Activity. J. Am. Chem. Soc. 2016, 138,
11117-11120.
[24] Chen, Z.; Yang, J.; Lu, X.; Hu, L.; Cao, X.; Wu, G.; Zhang, X. Triethyl bo-
rane-regulated selective production of polycarbonates and cyclic car-
bonates for the coupling reaction of CO2 with epoxides. Polym. Chem.
2019, 10, 3621-3628.
[25] Yang, G.; Zhang, Y.; Xie, R.; Wu, G. Scalable Bifunctional Organoboron
Catalysts for Copolymerization of CO2 and Epoxides with Unprecedented
Efficiency. J. Am. Chem. Soc. 2020, 142, 12245-12255.
[39] Wang, E.; Liu, S.; Lam, J. W. Y.; Tang, B. Z.; Wang, X.; Wang, F. Deciphering
Structure–Functionality Relationship of Polycarbonate-Based Polyelec-
trolytes by AIE Technology. Macromolecules 2020, 53, 5839-5846.
[40] Cyriac, A.; Lee, S. H.; Varghese, J. K.; Park, E. S.; Park, J. H.; Lee, B. Y. Im-
mortal CO2/Propylene Oxide Copolymerization: Precise Control of Molec-
ular Weight and Architecture of Various Block Copolymers. Macromole-
cules 2010, 43, 7398-7401.
[41] Ohkawara, T.; Suzuki, K.; Nakano, K.; Mori, S.; Nozaki, K. Facile estimation
of catalytic activity and selectivities in copolymerization of propylene ox-
ide with carbon dioxide mediated by metal complexes with planar tetra-
dentate ligand. J. Am. Chem. Soc. 2014, 136, 10728-10735.
[42] Peng, H.; Liu, B.; Wei, P.; Zhang, P.; Zhang, H.; Zhang, J.; Li, K.; Li, Y.; Cheng,
Y.; Lam, J. W. Y.; Zhang, W.; Lee, C. S.; Tang, B. Z Visualizing the Initial
Step of Self-Assembly and the Phase Transition by Stereogenic Am-
phiphiles with Aggregation-Induced Emission. ACS Nano 2019, 13,
839-846.
[43] Liu, S.; Cheng, Y.; Zhang, H.; Qiu, Z.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z.
In Situ Monitoring of RAFT Polymerization by Tetraphenyleth-
ylene-Containing Agents with Aggregation-Induced Emission Characteris-
tics. Angew. Chem. Int. Ed. Engl. 2018, 57, 6274-6278.
[26] Garden, J. A.; Saini, P. K.; Williams, C. K. Greater than the Sum of Its Parts:
A Heterodinuclear Polymerization Catalyst. J. Am. Chem. Soc. 2015, 137,
15078-15081.
[27] Liu, Y.; Zhou, H.; Guo, J.; Ren, W.; Lu, X.. Completely Recyclable Mono-
mers and Polycarbonate: Approach to Sustainable Polymers. Angew.
Chem. Int. Ed. Engl. 2017, 56, 4862-4866.
[28] Darensbourg, D. J.; Wei, S.; Yeung, A. D.; Ellis, W. C. An Efficient Method
of Depolymerization of Poly(cyclopentene carbonate) to Its Comonomers:
Cyclopentene Oxide and Carbon Dioxide. Macromolecules 2013, 46,
5850-5855.
[29] Kissling, S.; Lehenmeier, M. W.; Altenbuchner, P. T.; Kronast, A.; Reiter,
M.; Deglmann, P.; Seemann, U. B.; Rieger, B. Dinuclear zinc catalysts with
unprecedented activities for the copolymerization of cyclohexene oxide
and CO2. Chem. Commun. (Camb) 2015, 51, 4579-4582.
[30] Wu, G..; Wei, S.; Ren, W.; Lu, X.; Xu, T.; Darensbourg, D. J. Perfectly alter-
nating copolymerization of CO2 and epichlorohydrin using co-
balt(III)-based catalyst systems. J. Am. Chem. Soc. 2011, 133,
15191-15199.
[31] Zhou, Q.; Gu, L.; Gao, Y.; Qin, Y.; Wang, X.; Wang, F. Biodegradable
CO2-based polycarbonates with rapid and reversible thermal re-
[44] Liu, S.; Ou, H.; Li, Y.; Zhang, H.; Liu, J.; Lu, X.; Kwok, R. T. K.; Lam, J. W. Y.;
Ding, D.; Tang, B. Z. Planar and Twisted Molecular Structure Leads to the
High Brightness of Semiconducting Polymer Nanoparticles for NIR-IIa Flu-
orescence Imaging. J. Am. Chem. Soc. 2020, 142, 15146-15156.
[45] Lai, C. T.; Chien, R. H.; Kuo, S. W.; Hong, J. L. Tetraphenylthio-
phene-Functionalized Poly(N-isopropylacrylamide): Probing LCST with
Aggregation-Induced Emission. Macromolecules 2011, 44, 6546-6556.
[46] Qiu, Z.; Chu, E. K. K.; Jiang, M.; Gui, C.; Xie, N.; Qin, W.; Alam, P.; Kwok, R.
T. K.; Lam, J. W. Y.; Tang, B. Z. A Simple and Sensitive Method for an Im-
portant Physical Parameter: Reliable Measurement of Glass Transition
Temperature by AIEgens. Macromolecules 2017, 50, 7620-7627.
[47] Tang, L.; Jin, J. K.; Qin, A.; Yuan, W. Z; Mao, Y.; Mei, J.; Sun, J. Z.; Tang, B. Z.
A fluorescent thermometer operating in aggregation-induced emission
mechanism: probing thermal transitions of PNIPAM in water. Chem.
Commun. (Camb) 2009, 4974-4976.
[48] Jiang, X.; Smith, M. R.; Baker, G. L. Water-soluble thermoresponsive pol-
ylactides. Macromolecules 2008, 41, 318-324.
[49] Jia, Y.; Chen, K.; Gao, M.; Liu, S.; Wang, J.; Chen, X.; Wang, L.; Chen, Y.;
Song, W.; Zhang, H.; Ren, L.; Zhu, X.; Tang, B. Z. Visualizing phase
transition of upper critical solution temperature (UCST) polymers
6
© 2021 SIOC, CAS, Shanghai, & WILEY-VCH GmbH
This article is protected by copyright. All rights reserved.
Chin. J. Chem. 2021, 39, XXX-XXX