Chemistry Letters Vol.34, No.8 (2005)
1131
10
2c, than that displayed by direct excitation of the silole core
(360 nm). This ‘‘antenna effect’’ is the result of the larger extinc-
tion of the dendrimers at 280 nm compared to 360 nm.9
In conclusion, we have prepared the silole-core dendrimers
by the nickel-catalyzed reaction of the tetramethyldisilane and
dendritic acetylenes having poly(benzyl ether) units through
the third generation. The findings herein reported would be
important in view of optoelectronic applications. Further study
along the line is currently in progress.
2a
b
c
FLU
ABS
d
5
0
This work was partially supported by CREST-JST. We also
thank the Ministry of Education, Culture, Sports, Science and
Technology of Japan (No. 16685004).
200
300
400
Wavelength/nm
500
600
References and Notes
Figure 1. Absorption and fluorescence spectra of 2a–2d in
CH2Cl2.
1
a) J. Dubac, C. Guerin, and P. Meunier, ‘‘The Chemistry of Organic
Silicon Compounds,’’ ed. by Z. Rappoport and Y. Apeloig, John Wiley
& Sons, New York (1999), Vol. 2, Chap. 34. b) S. Yamaguchi and K.
Tamao, Bull. Chem. Soc. Jpn., 69, 2327 (1996). c) S. Yamaguchi and
K. Tamao, Chem. Lett., 34, 2 (2005). d) M. Hissler, P. W. Dyer, and R.
Table 1. Photophysical properties of silole-core dendrimers
2a–2d
´
Reau, Coord. Chem. Rev., 244, 1 (2003).
2
3
K. Tamao, M. Uchida, T. Izumizawa, K. Furukawa, and S. Yamaguchi,
J. Am. Chem. Soc., 118, 11974 (1996).
Absorption
Fluorescence
Cmpd
(Gn)
b,c
ꢂ
max/nm "=104 cmꢂ1 Mꢂ1
ꢂ
FLmax/nma
ꢀFL
ꢀET/%d
a) S. Yamaguchi, T. Endo, M. Uchida, T. Izumizawa, K. Furukawa, and
K. Tamao, Chem.—Eur. J., 6, 1683 (2000). b) S. Yamaguchi and K.
Tamao, J. Chem. Soc., Dalton Trans., 1998, 3693. c) J. Ohshita, H.
Kai, A. Takata, T. Iida, A. Kunai, N. Ohta, K. Komaguchi, M. Shiotani,
A. Adachi, K. Sakamaki, and K. Okita, Organometallics, 20, 4800
(2000). d) K.-H. Lee, J. Ohshita, and A. Kunai, Organometallics, 23,
5365 (2004). e) T. Lee, I. Jung, K.-H. Song, H. Lee, J. Choi, K. Lee,
B. J. Lee, J. Park, C. Lee, S. O. Kang, and J. Ko, Organometallics, 23,
5280 (2004).
a) S. Yamaguchi, R.-Z. Jin, and K. Tamao, J. Am. Chem. Soc., 121, 2937
(1999). b) H. Sohn, R. R. Huddleston, D. P. Powell, and R. West, J. Am.
Chem. Soc., 121, 2935 (1999). c) T. Sanji, T. Sakai, C. Kabuto, and
H. Sakurai, J. Am. Chem. Soc., 120, 4552 (1998). d) J. Chen, Z. Xie,
J. W. Y. Lam, C. C. W. Law, and B. Z. Tang, Macromolecules, 36,
1108 (2003).
J. Luo, Z. Xie, W. Y. Lam, L. Chang, H. Chen, C. Qiu, H. S. Kwok, X.
Zhan, Y. Zhu, and B. Z. Tang, Chem. Commun., 2001, 1740.
The very high photoluminescence quantum yield of tetraphenylsilole
derivatives in the solid state (ꢁ97%) was reported: H. Murata, Z. H.
Kafafi, and M. Uchida, Appl. Phys. Lett., 80, 189 (2002).
a) S. Yamaguchi, C. Xu, and K. Tamao, J. Am. Chem. Soc., 125, 13662
(2003). b) C. Xu, A. Wakamiya, and S. Yamaguchi, J. Am. Chem. Soc.,
127, 1638 (2005).
e
2a
(G0)
2b
249
356
278f
360
277
366
278
358
2.34
0.98
1.59
0.93
3.85
0.88
7.64
0.72
485
514
514
503
5:0 ꢃ 10ꢂ4
—
2:5 ꢃ 10ꢂ2 ꢁ100
(G1)
2c
6:8 ꢃ 10ꢂ2
51
28
(G2)
2d
4
0.12
(G3)
aExcited at 360 nm. bDetermined with quinine sulfate as a standard.
cFluorescence quantum yield, when excited at the core silole rings.
dEnergy transfer quantum efficiency from the dendron units to the core
silole within the dendrimers, when excited at the dendron units (280
nm). eNot estimated. fObserved as a shoulder.
5
6
nescence by dually facilitating electron delocalization and min-
imizing vibrational–rotational events in the excited state. Inter-
estingly, excitation of the benzyl ether-type dendron units at
280 nm also displayed an emission around 500 nm from the si-
lole ring unit, but almost no emission from the benzyl ether-type
dendron units was observed (310 nm),9 indicating that the exten-
sive energy transfer (ET) from the dendron units to the focal si-
lole ring occurred within the dendrimers. The ET quantum effi-
ciency (ꢀET), estimated by a comparison of the absorption spec-
trum and the excitation spectrum of the silole-core dendrimers
by monitoring the emission of the acceptor, i.e., the silole, are
also listed in Table 1. The efficiency was essentially quantitative
for 2b. However, the energy transfer efficiency to the core de-
creased with the generation growth of the dendrons and dropped
7
8
9
a) A. J. Boydston, Y. Yin, and B. J. Pagenkopf, J. Am. Chem. Soc., 126,
3724 (2004). b) A. J. Boysdston and B. L. Pagenkopf, Angew. Chem., Int.
Ed., 43, 6336 (2004).
´
S. M. Grayson and J. M. J. Frechet, Chem. Rev., 101, 3819 (2001).
10 a) D.-L. Jiang and T. Aida, J. Am. Chem. Soc., 120, 10895 (1998). b)
M. S. Choi, T. Aida, T. Yamazaki, and I. Yamazaki, Chem.—Eur. J., 8,
2667 (2002). c) C. Devadoss, P. Bharathi, and J. S. Moore, J. Am. Chem.
Soc., 118, 9635 (1996).
´
11 a) A. Adronov and J. M. J. Frechet, Chem. Commun., 2000, 1701. b)
P.-W. Wang, Y.-J. Liu, C. Devadoss, P. Bharathi, and J. S. Moore,
Adv. Mater., 8, 237 (1996). c) A. W. Freeman, S. C. Koene, P. R. L.
´
Malenfant, M. E. Thompson, and J. M. J. Frechet, J. Am. Chem. Soc.,
122, 12385 (2000).
12 H. Okinoshima, K. Yamamoto, and M. Kumada, J. Am. Chem. Soc., 94,
9263 (1972).
13 C. Hawker and J. M. J. Frechet, J. Am. Chem. Soc., 112, 7638 (1990).
14 The syntheses will be described in detail: T. Sanji, H. Ishiwata, T.
Kaizuka, M. Tanaka, H. Sakurai, R. Nagahata, and K. Takeuchi, Can.
J. Chem., in press.
´
15 a) S. Hecht and J. M. J. Frechet, J. Am. Chem. Soc., 121, 4084 (1999).
b) K. H. Duchene and F. Vogtle, Synthesis, 1986, 659. c) G. V.
dramatically to 28% for 2d.16 The Forster-type ET is favored by
¨
´
a) the large spectral overlap between donor emission and accep-
tor absorption, b) the high molar absorption coefficient of the ac-
cepter, c) the high fluorescence quantum yield of the donor, and
d) the short interchromophoric distance.11 The present system
was, however, not very high, especially for the higher genera-
tion,9 probably because all of the requirements for the efficient
Forster ET were not met. Further, the emission from the silole
¨
core observed upon excitation at the dendron units (280 nm)
was more intense, approximately three times more for 2b and
ˆ
¨
Wuytswinkel, B. Verheyde, F. Compernolle, S. Toppet, and W. Dehaen,
J. Chem. Soc., Perkin Trans. 1, 2000, 1337.
16 When 2d was excited at 280 nm, an emission around 390 nm was
observed along with the emission at 500 nm from the silole ring. A
detailed photophysical property of the dendrimers needs further study.
Published on the web (Advance View) July 9, 2005; DOI 10.1246/cl.2005.1130