Inorganic Chemistry
Article
(
8) Zhang, Q.; Kang, J.; Wang, Y. Development of Novel Catalysts
(28) Azcarate, I.; Costentin, C.; Robert, M.; Savea
́
nt, J.-M. Through-
for Fischer−Tropsch Synthesis: Tuning the Product Selectivity.
Space Charge Interaction Substituent Effects in Molecular Catalysis
Leading to the Design of the Most Efficient Catalyst of CO2-to-CO
Electrochemical Conversion. J. Am. Chem. Soc. 2016, 138, 16639−
16644.
ChemCatChem 2010, 2, 1030−1058.
(
9) Meshitsuka, S.; Ichikawa, M.; Tamaru, K. Electrocatalysis by
Metal Phthalocyanines in the Reduction of Carbon Dioxide. J. Chem.
Soc., Chem. Commun. 1974, 158−159.
(
(29) Chen, L.; Guo, Z.; Wei, X.-G.; Gallenkamp, C.; Bonin, J.;
10) Hiratsuka, K.; Takahashi, K.; Sasaki, H.; Toshima, S.
Anxolabeh
́ ̀
ere-Mallart, E.; Lau, K.-C.; Lau, T.-C.; Robert, M. Molecular
Electrocatalytic Behavior of Tetrasulfonated Metal Phthalocyanines
Catalysis of the Electrochemical and Photochemical Reduction of CO
2
in the Reduction of Carbon Dioxide. Chem. Lett. 1977, 6, 1137−1140.
with Earth-Abundant Metal Complexes. Selective Production of CO vs
HCOOH by Switching of the Metal Center. J. Am. Chem. Soc. 2015,
137, 10918−10921.
(
11) Takahashi, K.; Hiratsuka, K.; Sasaki, H.; Toshima, S.
Electrocatalytic Behavior of Tetrasulfonated Metal Phthalocyanines
in the Reduction of Carbon Dioxide. Chem. Lett. 1979, 8, 305−308.
(30) Ro
̈
melt, C.; Song, J.; Tarrago, M.; Rees, J. A.; van Gastel, M.;
ller, T.; DeBeer, S.; Bill, E.; Neese, F.; Ye, S. Electronic
(
12) Fisher, B. J.; Eisenberg, R. Electrocatalytic Reduction of Carbon
Weyhermu
̈
Dioxide by Using Macrocycles of Nickel and Cobalt. J. Am. Chem. Soc.
980, 102, 7361−7363.
13) O’Toole, T. R.; Margerum, L. D.; Westmoreland, T. D.; Vining,
Structure of a Formal Iron(0) Porphyrin Complex Relevant to CO
2
1
(
Reduction. Inorg. Chem. 2017, 56, 4745−4750.
(31) Riplinger, C.; Sampson, M. D.; Ritzmann, A. M.; Kubiak, C. P.;
Carter, E. A. Mechanistic Contrasts between Manganese and Rhenium
Bipyridine Electrocatalysts for the Reduction of Carbon Dioxide. J.
Am. Chem. Soc. 2014, 136, 16285−16298.
W. J.; Murray, R. W.; Meyer, T. J. Electrocatalytic Reduction of CO at
2
a Chemically Modified Electrode. J. Chem. Soc., Chem. Commun. 1985,
1
(
416−1417.
14) Bolinger, C. M.; Story, N.; Sullivan, B. P.; Meyer, T. J.
(32) Riplinger, C.; Carter, E. A. Influence of Weak Brønsted Acids on
Electrocatalytic CO2 Reduction by Manganese and Rhenium
Bipyridine Catalysts. ACS Catal. 2015, 5, 900−908.
Electrocatalytic Reduction of Carbon Dioxide by 2,2’-Bipyridine
Complexes of Rhodium and Iridium. Inorg. Chem. 1988, 27, 4582−
4587.
́
(33) Roy, S.; Sharma, B.; Pecaut, J.; Simon, P.; Fontecave, M.; Tran,
(
15) Sypaseuth, F. D.; Matlachowski, C.; Weber, M.; Schwalbe, M.;
P. D.; Derat, E.; Artero, V. Molecular Cobalt Complexes with Pendant
Amines for Selective Electrocatalytic Reduction of Carbon Dioxide to
Formic Acid. J. Am. Chem. Soc. 2017, 139, 3685−3696.
Tzschucke, C. C. Electrocatalytic Carbon Dioxide Reduction by Using
Cationic Pentamethylcyclopentadienyl−Iridium Complexes with Un-
symmetrically Substituted Bipyridine Ligands. Chem. - Eur. J. 2015, 21,
(34) Wang, X.; Thiel, I.; Fedorov, A.; Coperet, C.; Mougel, V.;
Fontecave, M. Site-isolated Manganese Carbonyl on Bipyridine-
Functionalities of Periodic Mesoporous Organosilicas: Efficient CO2
Photoreduction and Detection of Key Reaction Intermediates. Chem.
Sci. 2017, 8, 8204−8213.
6
(
564−6571.
16) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M.
Electrocatalytic and Homogeneous Approaches to Conversion of CO2
to Liquid Fuels. Chem. Soc. Rev. 2009, 38, 89−99.
(
17) Elgrishi, N.; Chambers, M. B.; Fontecave, M. Turning it off!
(35) Nichols, A. W.; Chatterjee, S.; Sabat, M.; Machan, C. W.
Disfavouring Hydrogen Evolution to Enhance Selectivity for CO
Production During Homogeneous CO2 Reduction by Cobalt-
Terpyridine Complexes. Chem. Sci. 2015, 6, 2522−2531.
Electrocatalytic Reduction of CO to Formate by an Iron Schiff Base
Complex. Inorg. Chem. 2018, 57, 2111.
(36) Taheri, A.; Thompson, E. J.; Fettinger, J. C.; Berben, L. A. An
2
(
18) Takeda, H.; Cometto, C.; Ishitani, O.; Robert, M. Electrons,
Iron Electrocatalyst for Selective Reduction of CO to Formate in
2
Photons, Protons and Earth-Abundant Metal Complexes for Molecular
Water: Including Thermochemical Insights. ACS Catal. 2015, 5,
7140−7151.
Catalysis of CO Reduction. ACS Catal. 2017, 7, 70−88.
2
(
19) Costentin, C.; Robert, M.; Saveant, J.-M. Catalysis of the
(37) Mondal, B.; Rana, A.; Sen, P.; Dey, A. Intermediates Involved in
−
+
Electrochemical Reduction of Carbon Dioxide. Chem. Soc. Rev. 2013,
2, 2423−2436.
20) Froehlich, J. D.; Kubiak, C. P. Homogeneous CO Reduction by
the 2e /2H Reduction of CO to CO by Iron(0) Porphyrin. J. Am.
2
4
Chem. Soc. 2015, 137, 11214−11217.
(
́
(38) Costentin, C.; Robert, M.; Saveant, J.-M.; Tatin, A. Efficient and
2
Ni(cyclam) at a Glassy Carbon Electrode. Inorg. Chem. 2012, 51,
932−3934.
21) Froehlich, J. D.; Kubiak, C. P. The Homogeneous Reduction of
Selective Molecular Catalyst for the CO -to-CO Electrochemical
2
3
Conversion in Water. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 6882−
6886.
(
+
CO by [Ni(cyclam)] : Increased Catalytic Rates with the Addition of
(39) Schneider, J.; Jia, H.; Muckerman, J. T.; Fujita, E.
2
+
a CO Scavenger. J. Am. Chem. Soc. 2015, 137, 3565−3573.
Thermodynamics and Kinetics of CO , CO, and H Binding to the
2
(
22) Bourrez, M.; Molton, F.; Chardon-Noblat, S.; Deronzier, A.
Metal Centre of CO Reductioncatalysts. Chem. Soc. Rev. 2012, 41,
2
[
Mn(bipyridyl)(CO) Br]: An Abundant Metal Carbonyl Complex as
2036−2051.
3
Efficient Electrocatalyst for CO Reduction. Angew. Chem., Int. Ed.
(40) Can, M.; Armstrong, F. A.; Ragsdale, S. W. Structure, Function,
and Mechanism of the Nickel Metalloenzymes, CO Dehydrogenase,
and Acetyl-CoA Synthase. Chem. Rev. 2014, 114, 4149−4174.
(41) Parkin, A.; Seravalli, J.; Vincent, K. A.; Ragsdale, S. W.;
2
2
(
011, 50, 9903−9906.
23) Smieja, J. M.; Sampson, M. D.; Grice, K. A.; Benson, E. E.;
Froehlich, J. D.; Kubiak, C. P. Manganese as a Substitute for Rhenium
in CO Reduction Catalysts: The Importance of Acids. Inorg. Chem.
Armstrong, F. A. Rapid and Efficient Electrocatalytic CO /CO
2
2
2
(
013, 52, 2484−2491.
Interconversions by Carboxydothermus Hydrogenoformans CO
Dehydrogenase I on an Electrode. J. Am. Chem. Soc. 2007, 129,
10328−10329.
(42) Wang, V. C. C.; Can, M.; Pierce, E.; Ragsdale, S. W.; Armstrong,
F. A. A Unified Electrocatalytic Description of the Action of Inhibitors
of Nickel Carbon Monoxide Dehydrogenase. J. Am. Chem. Soc. 2013,
135, 2198−2206.
(43) Dobbek, H.; Svetlitchnyi, V.; Gremer, L.; Huber, R.; Meyer, O.
Crystal Structure of a Carbon Monoxide Dehydrogenase Reveals a
[Ni-4Fe-5S] Cluster. Science 2001, 293, 1281.
(44) Fogeron, T.; Todorova, T. K.; Porcher, j. p.; Gomez-Mingot,
M.; Chamoreau, L.-M.; Mellot-Draznieks, C.; Li, Y.; Fontecave, M. A
Bioinspired Nickel(bis-dithiolene) Complex as a Homogeneous
Catalyst for Carbon Dioxide Electroreduction. ACS Catal. 2018, 8,
2030−2038.
24) Costentin, C.; Robert, M.; Saveant, J.-M.; Tatin, A. Efficient and
́
Selective Molecular Catalyst for the CO -to-CO Electrochemical
Conversion in Water. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 6882.
(
Acid−Base Groups in Molecular Catalysts: H-Bond Promoters or
Proton Relays? Mechanisms of the Conversion of CO to CO by
Electrogenerated Iron(0)Porphyrins Bearing Prepositioned Phenol
Functionalities. J. Am. Chem. Soc. 2014, 136, 11821−11829.
(
Ultraefficient Homogeneous Catalyst for the CO -to-CO Electro-
chemical Conversion. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 14990.
2
́
25) Costentin, C.; Passard, G.; Robert, M.; Saveant, J.-M. Pendant
2
́
26) Costentin, C.; Passard, G.; Robert, M.; Saveant, J.-M.
2
(
́
27) Costentin, C.; Drouet, S.; Robert, M.; Saveant, J.-M. A Local
Proton Source Enhances CO Electroreduction to CO by a Molecular
Fe Catalyst. Science 2012, 338, 90.
2
H
Inorg. Chem. XXXX, XXX, XXX−XXX