M.B. Babanly et al. / Journal of Alloys and Compounds 481 (2009) 349–353
353
Table 3
Table 5
Temperature dependences of EMF of chains type (1) in some phase areas of the
system Bi–Te–I (T = 305–400 K).
Standard integral thermodynamic functions of telluroiodides and triiodide of
bismuth.
ꢀ
ꢁ
1/2
2
E
Compound
−ꢀG2098
−ꢀH2098
S2098
J/mol K
S
Phase area on Fig. 2
E = a + bT
t
+ Sb2(T − T)2
n
kJ/mol
ꢂ
ꢃ
ꢃ
1/2
BiI3 [23]
BiTeI
Bi2TeI
148.8 8.0
81.8 2.7
107.7 3.0
130.1 4.0
150.6 6.0
82.6 2.5 77 9 [3]
110.7 4.2
224.7 6.3
161.6 3.6 176 11 [3]
211.3 9.1
+ 1.4 × 10−4(−342.4)2
1.84
BiI3 + BiTeI + Te
E = 168.1 − 0.004
E = 97.06 − 0.025
E = 12.4 + 0.020
2
26
ꢂ
1/2
+ 6.7 × 10−4(−346.6)2
7.26
26
BiI3 + Bi2TeI + BiTeI
BiI3 + Bi4TeI1.25 + Bi2TeI
2
Bi4TeI1.25
130.0 6.8
350.1 16.6
ꢂ
ꢃ
1/2
2.68
26
2
+ 3 × 10−4(−354.5)2
(ꢀZ0- ꢀG2098 and ꢀH2098 —values for the correspond-
ing compound, ꢀZBi − ꢀGBi, ꢀHBi). The standard entropies
of telluroiodides of bismuth are calculated using relations
(9)–(11):
Table 4
Relative partial thermodynamic functions of bismuth in alloys of the system Bi–Te–I
at 298 K.
¯
¯
¯
Phase area from Fig. 2
−ꢀGBi
−ꢀHBi
ꢀSBi
SB0iTeI = 0.667(ꢀSBi + SB0i) + 0.333SB0iI + ST0e
(9)
(10)
3
kJ/mol
J/mol K
SB0i
= ꢀSBi + SB0i + SB0iTeI
BiI3 + BiTeI + Te
BiI3 + Bi2TeI + BiTeI
BiI3 + Bi4TeI1.25 + Bi2TeI
48.31 0.11
25.94 0.26
5.32 0.20
48.66 0.78
28.1 1.7
3.6 1.2
−1.2 2.3
−7.2 5.0
5.9 3.3
TeI
TeI
2
4
SB0i
= 1.917(ꢀSBi + SB0i) + SB0i TeI + 0.083SB0iI
1,25
2
3
The corresponding thermodynamic data of BiI3 (Table 5), Te
The analysis of the temperature dependences of the EMF of the
alloys in the indicated heterogeneous areas has shown that they
are practically linear. It is confirmed by these data that the com-
positions of coexisted phases in the given heterogeneous areas in
for estimations of the partial entropy and enthalpy from values of
the temperature coefficients of the EMF [18,19]. The EMF results
had been analyzed by an approximation of the linear temperature
function using the method of least squares [20]. Thus, according to
recommendations [21], it is expressed as linear equation:
(S0 = 49.5 0.3 J/(K mol)) and Bi (S0 = 56.9 0.5 J/(K mol)) [22,23]
had been used for calculations in relations (6)–(11).
The results of calculations are presented in Table 5. The accuracy
has been determined by a method of errors accumulation. In Table 5,
it is also shown some data of the work [3] obtained by an indirect
way from the measurements of the saturated vapor pressure of BiTeI
which agree with our data in the range of errors.
References
ꢄ
ꢅ
[1] E.I. Gerzanich, V.M. Fridkin, Nauka (1982) p. 114.
[2] J. Fenner, A. Rabenau, G. Trageser, Adv. Inorg. and Radiochemistry, v. 23, Acad.
Press, New York, 1980, pp. 329–416.
1/2
SE2
n
E = a + bT
t
+ Sb2(T − T)2
(2)
[3] B.A. Popovkin, Physico-chemical fundamentals of the control synthesis of
sulpho-iodide of antimony and other chalcogeno- (oxo)-halogenides of anti-
mony and bismuth, Doctoral thesis, M.: MSU, 1983, p. 349.
[4] V.V. Sobolev, E.V. Pesterev, V.V. Sobolev, Inorg. Mater. 40 (2) (2004) 172–173.
[5] J. Horak, H. Rodot, C.r. Akad. Sci. Paris Serie B 267 (6) (1968) 363–366.
[6] N.R. Valitova, V.A. Aleshin, B.A. Popovkin, A.V. Novoselova, Inorg. Mater. 12 (2)
(1976) 225–228.
[7] A. Tomokiyo, T. Okada, S. Kawanos, Jpn. J. Appl. Phys. 16 (6) (1977) 291–298.
[8] A.V. Shevelkov, E.V. Dikarev, R.V. Shpanchenko, B.A. Popovkin, J. Solid State
Chem. 114 (1995) 379–395.
[9] D.P. Belotskiy, I.N. Antipov, V.F. Nadtochiy, S.M. Dodik, Inorg. Mater. 5 (10) (1969)
1163.
[10] D.P. Belotskiy, C.M. Dodik, I.N. Antipov, Z.I. Nefedov, Ukr. Chem. J. 36 (9) (1970)
897–900.
[11] L.T. Evdokimenko, M.I. Tsypin, Inorg. Mater. 7 (8) (1971) 1317–1320.
[12] D.P. Belotskiy, C.M. Dodik, O.A. Demkiv, Inorg. Mater. 38 (8) (1972)766–768.
[13] S.V. Savilov, V.N. Khrustalev, A.N. Kuznetsov, B.A. Popovkin, M.Ju. Antipin, Ser.
Chem. (1) (2005) 86–91.
[14] Z.S. Aliev, M.B. Babanly, News Baku Univ., Nat. Sci. ser. (4) (2006) 35–38.
[15] Z.S. Aliev, M.B. Babanly, Chem. Probl. (4) (2006) 691–693.
[16] Z.S. Aliev, M.B. Babanly, Chem. J. (2) (2007) 83–85.
where n—number of pairs of values E and T; SE and Sb—dispersion of
individual measurements of the EMF and the factor b, accordingly;
Student’s criteria is less than 2 (t ≤ 2) at the confidence level of 95%
Table 3. The partial molar functions of bismuth in the indicated
three-phase areas (Table 2) had been calculated from these equa-
tions using the known thermodynamic relations (Table 4).
According to [18,19] and Fig. 2, these partial molar values are
related to the follow potential-formation reactions:
Bi + 0.5BiI3 + 1.5Te = 1.5BiTeI
Bi + BiTeI = Bi2TeI
(4)
(5)
Bi + 0.522Bi2TeI + 0.043BiI3 = 0.522Bi4TeI1.25
[17] T.B. Massalski, Binary Alloy Phase Diagrams, v. 3, second ed., ASM Inter. Mat.
Park, Ohio, 1990, 2242 p.
[18] M.B. Babanly, Yu.A. Yusibov, V.T. Abishov, EMF method for thermodynamics of
the composite semiconductor compounds, BSU, Baku, 1992, 327 p.
[19] M.B. Babanly, A.A. Kuliyev, Mathematical Problems of Chemical Thermodynam-
ics, Novosibirsk, Nauka, 1985, pp. 192–201.
According to equations of the reactions (3)–(4), the standard
thermodynamic functions of telluroiodides of bismuth are calcu-
lated in relations (6)–(8):
ꢀZB0iTeI = 0.667ꢀZBi + 0.333 ꢀZ0
(6)
(7)
(8)
[20] K. Derffel, Stat. Anal. Chem. M. Mir (1994), 268 p.
BiI
3
[21] A.N. Kornilov, L.B. Stepina, V.A. Sokolov, J. Phys. Chem. 46 (11) (1972) 2975–2979.
[22] O. Kubaschewski, C.B. Alcock, P.J. Spencer, Materials Thermochemistry, Perga-
mon Press, Oxford, 1993, 350 p.
[23] Data Base of Thermal Constants of Substances, Digital version, in: V.S. Yungman
ꢀZB0i
= ꢀZBi + ꢀZ0
TeI
TeI
BiTeI
2
4
ꢀZB0i
= 1.917ꢀZBi + ꢀZ0 TeI + 0.083 ꢀZB0iI
Bi
1.25
2
3