ChemSusChem
10.1002/cssc.201802689
COMMUNICATION
TOF of catalyst [Mn]-1 in this reaction could reach up to 833 h-1
[1]
a) M. Poliakoff, J. M. Fitzpatrick, T. R. Farren, P. T. Anastas, Science 2002,
297, 807-810; b) D. R. Dodds, R. A. Gross, Science 2007, 318, 1250-1251;
for the first 7 hours (entry 12). However, the selectivity for
isobutanol was decreased to 75% along with 25% n-propanol
selectivity.
c) D. M. Alonso, J. Q. Bond, J. A. Dumesic, Green Chem. 2010, 12, 1493-
1513; d) C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon, M. Poliakoff,
Science 2012, 337, 695-699.
[
[
2] J. Goldemberg, Science 2007, 315, 808-810.
3] a) P. Durre, Biotechnol. J. 2007, 2, 1525-1534; b) S. Atsumi, A. F. Cann,
M. R. Connor, C. R. Shen, K. M. Smith, M. P. Brynildsen, K. J. Chou, T.
Hanai, J. C. Liao, Metab Eng 2008, 10, 305-311; c) B. G. Harvey, H. A.
Meylemans, J. Chem. Technol. Biotechnol. 2011, 86, 2-9.
Table 2. Optimization of the reaction conditions.a
[
[
4] C. Jin, M. Yao, H. Liu, C.-f. F. Lee, J. Ji, Renew. Sust. Energy Rev. 2011,
15, 4080-4106.
5] a) G. R. Dowson, M. F. Haddow, J. Lee, R. L. Wingad, D. F. Wass, Angew.
Chem. Int. Ed. 2013, 52, 9005-9008; b) R. L. Wingad, P. J. Gates, S. T. G.
Street, D. F. Wass, ACS Catal. 2015, 5, 5822-5826; c) K. N. Tseng, S. Lin,
J. W. Kampf, N. K. Szymczak, Chem. Commun. 2016, 52, 2901-2904; d)
Y. Xie, Y. Ben-David, L. J. Shimon, D. Milstein, J. Am. Chem. Soc. 2016,
1
38, 9077-9080.
6] a) K. Koda, T. Matsu-ura, Y. Obora, Y. Ishii, Chem. Lett. 2009, 38, 838-
39; b) S. Chakraborty, P. E. Piszel, C. E. Hayes, R. T. Baker, W. D. Jones,
[
8
J. Am. Chem. Soc. 2015, 137, 14264-14267.
[
[
7] S. Fu, Z. Shao, Y. Wang, Q. Liu, J. Am. Chem. Soc. 2017, 139, 11941-
11948.
8] A. M. Brownstein, in Renewable Moto Fuels: The Past, the Present and the
Uncertain Future, Vol. 5, Butterworth-Heinemann, Oxford, 2014, p. 47.
9] H. Aitchison, R. L. Wingad, D. F. Wass, ACS Catal. 2016, 6, 7125-7132.
10] a) W. Ueda, T. Kuwabara, T. Ohshida, Y. Morikawa, J. Chem. Soc., Chem.
Commun. 1990, 1558-1559; b) C. Carlini, M. Di Girolamo, A. Macinai, M.
Marchionna, M. Noviello, A. M. Raspolli Galletti, G. Sbrana, J. Mol.Catal.
A: Chem. 2003, 200, 137-146; c) E. S. Olson, R. K. Sharma, T. R. Aulich,
Appl. Biochem. Biotechnol. 2004, 115, 913-932; d) Q. Liu, G. Xu, X. Wang,
X. Mu, Green Chem. 2016, 18, 2811-2818; e) Q. Liu, G. Xu, Z. Wang, X.
Liu, X. Wang, L. Dong, X. Mu, H. Liu, ChemSusChem 2017, 10, 4748-4755.
11] a) R. L. Wingad, E. J. Bergstrom, M. Everett, K. J. Pellow, D. F. Wass,
Chem. Commun. 2016, 52, 5202-5204; b) R. J. Newland, M. F. Wyatt, R.
L. Wingad, S. M. Mansell, Dalton Trans. 2017, 46, 6172-6176; c) K. J.
Pellow, R. L. Wingad, D. F. Wass, Catal. Sci. Technol. 2017, 7, 5128-5134.
12] a) S. Elangovan, J. Neumann, J.-B. Sortais, K. Junge, C. Darcel, M. Beller,
Nat. Commun. 2016, 7, 12641; b) M. Mastalir, M. Glatz, E. Pittenauer, G.
Allmaier, K. Kirchner, J. Am. Chem. Soc. 2016, 138, 15543-15546; c) A.
Mukherjee, A. Nerush, G. Leitus, L. J. W. Shimon, Y. Ben David, N. A.
Espinosa Jalapa, D. Milstein, J. Am. Chem. Soc. 2016, 138, 4298-4301; d)
M. Peña‐López, P. Piehl, S. Elangovan, H. Neumann, M. Beller, Angew.
Chem. Int. Ed. 2016, 55, 14967-14971; e) M. Andérez-Fernández, L. K.
Vogt, S. Fischer, W. Zhou, H. Jiao, M. Garbe, S. Elangovan, K. Junge, H.
Junge, R. Ludwig, M. Beller, Angew. Chem. Int. Ed. 2017, 56, 559-562; f)
A. Bruneau-Voisine, D. Wang, V. Dorcet, T. Roisnel, C. Darcel, J.-B.
Sortais, J. Catal. 2017, 347, 57-62; g) A. Bruneau-Voisine, D. Wang, V.
Dorcet, T. Roisnel, C. Darcel, J.-B. Sortais, Org. Lett. 2017, 19, 3656-3659;
h) F. Kallmeier, B. Dudziec, T. Irrgang, R. Kempe, Angew. Chem. Int. Ed.
[
[
[
[
aReaction conditions: 1 mL (17.13 mmol) ethanol, 10.4 mL (256.95 mmol)
methanol, 0.05 mol% [Mn]-1, and 350 mol% NaOMe at given temperature
and reaction time under Ar in 25 mL autoclave. Conversion, yield,
b
selectivity and TON were determined in the same way as in Table 1. 1.25
c
d
mL (21.41 mmol) ethanol, 280 mol% NaOMe. 15 mL MeOH. In 60 mL
autoclave, using 4 mL ethanol, 41.6 mL methanol.
In summary, we have developed an effective and sustainable
synthesis of advanced biofuel isobutanol via upgrading of
2
017, 56, 7261-7265; i) M. Mastalir, E. Pittenauer, G. Allmaier, K. Kirchner,
J. Am. Chem. Soc. 2017, 139, 8812-8815; j) D. H. Nguyen, Y. Morin, L.
Zhang, X. Trivelli, F. Capet, S. Paul, S. Desset, F. Dumeignil, R. M. Gauvin,
ChemCatChem 2017, 9, 2652-2660; k) D. H. Nguyen, X. Trivelli, F. Capet,
J.-F. Paul, F. Dumeignil, R. M. Gauvin, ACS Catal. 2017, 7, 2022-2032; l)
U. K. Das, Y. Ben-David, Y. Diskin-Posner, D. Milstein, Angew. Chem. Int.
Ed. 2018, 57, 2179-2182; m) U. K. Das, S. Chakraborty, Y. Diskin-Posner,
D. Milstein, Angew. Chem. Int. Ed. 2018, 57, 13444-13448; n) F. Kallmeier,
R. Kempe, Angew. Chem. Int. Ed. 2018, 57, 46-60; o) N. Gorgas, K.
Kirchner, Acc. Chem. Res. 2018, 51, 1558-1569; p) G. Zhang, T. Irrgang,
T. Dietel, F. Kallmeier, R. Kempe, Angew. Chem. Int. Ed. 2018, 57, 9131-
(
bio)ethanol with methanol. This transformation was realized by
using well-defined pincer PNP Mn-catalyst, reaching
remarkable turnover number (9233) and turnover frequency (833
a
a
-1
h ).
Acknowledgements
9
135.
13] Y. Wang, Z. Shao, K. Zhang, Q. Liu, Angew. Chem. Int. Ed. 2018, 57,
5143-15147.
[
[
1
We are grateful for the financial supports from National Program
for the National Natural Science Foundation of China (91845107,
14] Z. Shao, Y. Wang, Y. Liu, Q. Wang, X. Fu, Q. Liu, Org. Chem. Front. 2018,
5, 1248-1256.
21822106) and the 111 project.
Keywords: Methanol • Ethanol • Isobutanol • Manganese •
Guerbet reaction
This article is protected by copyright. All rights reserved.