280
A. Yavorskyy et al. / Tetrahedron Letters 52 (2011) 278–280
8. (a) Harakat, D.; Pesch, J.; Marinkovic´, S.; Hoffmann, N. Org. Biomol. Chem. 2006,
4, 1202; (b) Bertrand, S.; Hoffmann, N.; Humbel, S.; Pete, J. P. J. Org. Chem. 2000,
65, 8690; (c) Bertrand, S.; Glapski, C.; Hoffmann, N.; Pete, J. P. Tetrahedron Lett.
1999, 40, 3169.
of the reactor makes it an interesting synthetic tool for chemical
research and development (rather than production).14 The gener-
ally small volumes additionally help to reduce the amounts of
chemicals and solvents, thus contributing to Green Chemistry.15,16
The set-up also allows for parallel synthesis using multiple capil-
laries and this modification is currently being investigated using
an improved reactor with up to 10 microcapillaries.17 This modi-
fied design will also increase the overall aperture of the microcap-
illary with a tighter wrapping around the central glass column.
9. Shvydkiv, O.; Yavorskyy, A.; Nolan, K.; Youssef, A.; Riguet, E.; Hoffmann, N.;
10. General procedure for irradiation in the capillary microreactor: A solution of the
furanone (0.334 mmol) and DMBP (0.066 mmol) in isopropanol (10 mL) was
purged with nitrogen and loaded into a dual syringe pump. The reaction
mixture was pumped through the microcapillaries while being irradiated by a
single UVA lamp (RPR-3500 Å, k = 365 25 nm, 8 W). After evaporation of the
solvent, the conversion was determined by 1H NMR spectroscopy of the crude
product. The signal integration for the proton at the b-position of 1a–c was
compared to the signal integration for the acetal proton of 2a–c. Pure products
were isolated by column chromatography.9
Acknowledgements
11. General procedure for irradiation under batch conditions: A solution of the
furanone (0.5 mmol) and DMBP (0.1 mmol) in isopropanol (15 mL) was added
to a Pyrex glass tube (inner diameter: 9 mm) and purged with argon. The tube
was stoppered and the reaction mixture was irradiated for 5 min at
350 25 nm (Rayonet RPR-100, equipped with 16 ꢁ RPR-3500 Å lamps,
16 ꢁ 8 W). After evaporation of the solvent, the conversion was determined
by 1H NMR spectroscopy of the crude product. Pure products were isolated by
column chromatography.9
This work was financially supported by Science Foundation Ire-
land (SFI, 07/RFP/CHEF817), the Environmental Protection Agency
(EPA, 2008-ET-MS-2-S2), the Department of Environment, Heritage
and Local Government (DEHLG, 2008-S-ET-2) and the Région
Champagne-Ardenne. The authors thank Dr. J. C. Scaiano (Luz-
chem) for providing technical information on the UVA lamp.
12. Braun, A. M.; Maurette, M.; Oliveros, E. Photochemical Technology; Wiley:
Chichester, 1991.
13. Space-time yields (STY) are dependent on the reactor geometry and were
References and notes
calculated using: STY = n/(VR ꢁ t), where
n is the amount of converted
furanone, VR the reactor volume and t the irradiation time. Meyer, S.; Tietze,
D.; Rau, S.; Schäfer, B.; Kreisel, G. J. Photochem. Photobiol. A: Chem. 2007, 186,
248.
1. (a) Fukuyama, T.; Rahman, Md. T.; Sato, M.; Ryu, I. Synlett 2008, 151; (b)
Jähnisch, K.; Hessel, V.; Löwe, H.; Baerns, M. Angew. Chem., Int. Ed. 2004, 43,
406.
2. (a) Coyle, E. E.; Oelgemöller, M. Photochem. Photobiol. Sci. 2008, 7, 1313; (b)
Coyle, E. E.; Oelgemöller, M. Chem. Technol. 2008, 5, T95; (c) Matsushita, Y.;
Ichimura, T.; Ohba, N.; Kumada, S.; Sakada, K.; Suzuki, T.; Tanibata, H.; Murata,
T. Pure Appl. Chem. 2007, 79, 1959; (d) Ichimura, T.; Matsushita, Y.; Sakeda, K.;
Suzuki, T. In Microchemical Engineering in Practice; Dietrich, T. R., Ed.; Wiley:
Hoboken, 2009; pp 385–402.
3. (a) Werner, S.; Seliger, R.; Rauter, H.; Wissmann, F. EP-2065387A2, 2009; Chem.
Abstr. 2009, 150, 376721.; (b) Vasudevan, A.; Villamil, C.; Trumball, J.; Olson, J.;
Sutherland, D.; Pan, J.; Djuric, S. Tetrahedron Lett. 2010, 51, 4007.
4. (a) Sugimoto, A.; Fukuyama, T.; Sumino, Y.; Takagi, M.; Ryu, I. Tetrahedron 2009,
65, 1593; (b) Sugimoto, A.; Sumino, Y.; Takagi, M.; Fukuyama, T.; Ryu, I.
Tetrahedron Lett. 2006, 47, 6197.
14. (a) Chin, P.; Barney, W. S.; Pindzola, B. A. Curr. Opin. Drug Discovery Dev. 2009,
12, 848; (b) Rubin, A. E.; Tummala, S.; Both, D. A.; Wang, C.; Delaney, E. J. Chem.
Rev. 2006, 106, 2794.
15. (a) Hessel, V.; Kralisch, D.; Krtschil, U. Energy Environ. Sci. 2008, 1, 467; (b)
Kralisch, D.; Kreisel, G. Chem. Eng. Sci. 2007, 62, 1094; (c) Mason, B. P.; Price, K.
E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300;
(d) Haswell, S. J.; Watts, P. Green Chem. 2003, 5, 240.
16. For further examples of ‘Green Photochemistry’, see: (a) Albini, A.; Fagnoni, M.
In Green Chemical Reactions (NATO Science for Peace and Security Series, Series C:
Environmental Security); Tundo, P., Esposito, V., Eds.; Springer: Dordrecht,
2008; pp 173–189; (b) Hoffmann, N. Pure Appl. Chem. 2007, 79, 1949; (c)
Oelgemöller, M.; Jung, C.; Mattay, J. Pure Appl. Chem. 2007, 79, 1939; (d)
Mattay, J. Chem. unserer Zeit 2002, 36, 98.
17. For a multiple microcapillary reactor for (thermal) organic synthesis, see:
Hornung, C. H.; Hallmark, B.; Baumann, M.; Baxendale, I. R.; Ley, S. V.; Hester,
P.; Clayton, P.; Mackley, M. R. Ind. Eng. Chem. Res. 2010, 49, 4576.
5. Horie, T.; Sumino, M.; Tanaka, T.; Matsushita, Y.; Ichimura, T.; Yoshida, J. Org.
Process Res. Dev. 2010, 14, 405.
6. Hook, B. D. A.; Dohle, W.; Hirt, P. R.; Pickworth, M.; Berry, M. B.; Booker-
Milburn, K. I. J. Org. Chem. 2005, 70, 7558.
7. (a) Ohga, K.; Matsuo, T. J. Org. Chem. 1974, 39, 106; (b) Hoffmann, N.
Tetrahedron: Asymmetry 1994, 5, 879.