C O M M U N I C A T I O N S
In summary, the first (R,R)-TMCDA-coordinated organolithium
adducts show a clear influence of the size of the organolithium on
the type of aggregation. In addition to the mechanism of aromatic
deprotonation proposed by Collum et al. via triple ions or open
dimers, the highly reactive monomeric s-BuLi‚(R,R)-TMCDA may
react by interactions involving the open lithium center of a
monomeric species.13 We are currently investigating structure/
reactivity patterns based on the observed molecular structures.
Acknowledgment. We are grateful to the Deutsche For-
schungsgemeinschaft and The Fonds der Chemischen Industrie for
support.
Figure 4. Molecular structure of [s-BuLi‚(R,R)-TMCDA]2 (3) in the crystal
(disordered sec-Butyl). Selected bond lengths (Å) and angles (deg) (some
hydrogens omitted): C11B-Li, 2.118(12); C11A-Li, 2.104(11); Li-N1,
2.054(5); Li-N2, 2.076(6); N1-Li-N2, 86.71(17); N1-Li-C11A, 122.0-
(4); N2-Li-C11A, 146.1(4); N1-Li-C11B, 144.0(5); N2-Li-C11B,
122.5(4).
Supporting Information Available: Crystallographic (CIF), ex-
perimental, and computational data. This material is available free of
References
(1) For reviews, see: (a) Hoppe, D.; Hense, T. Angew. Chem., Int. Ed. Engl.
1997, 36, 2282. (b) Beak, P.; Basu, A.; Gallagher, D. J.; Park, Y. S.;
Thayumanavan, S. Acc. Chem. Res. 1996, 29, 2283.
(2) For examples: (a) Hoppe, D.; Hintze, F.; Tebben, P. Angew. Chem., Int.
Ed. Engl. 1990, 29, 1422. (b) Kerrick, S. T.; Beak, P. J. Am. Chem. Soc.
1991, 113, 9708. (c) Whisler, M. C.; Beak, P. J. Org. Chem. 2003, 68,
1207. (d) Coldham, I.; Copley, R. C. B.; Haxell, T. F. N.; Howard, S.
Org. Biomol. Chem. 2003, 1, 1532. (e) Metallinos, C.; Szillat, H.; Taylor,
N. J.; Snieckus, V. AdV. Synth. Catal. 2003, 345, 370.
(3) (a) Dearden, M. J.; Firkin, C. R.; Hermet, R.; O’ Brian, P. J. Am. Chem.
Soc. 2002, 124, 11870. (b) McGrath, M. J.; Bilke, J. L.; O’Brien, P. Chem.
Commun. 2006, 2607. (c) Wu¨rthwein, E.-U.; Behrens, K.; Hoppe, D.
Chem. Eur. J. 1999, 5, 3459. (d) Wiberg, K. B.; Bailey, W. F. Tetrahedron
Lett. 2000, 41, 9365.
(4) (a) Strohmann, C.; Seibel, T.; Strohfeldt, K. Angew. Chem., Int. Ed. 2003,
42, 4531. (b) Strohmann, C.; Strohfeldt, K.; Schildbach, D. J. Am. Chem.
Soc. 2003, 125, 13672. (c) Vestergren, M.; Eriksson, J.; Hilmersson, G.;
Håkansson, M. J. Organomet. Chem. 2003, 682, 172. (d) Strohmann, C.;
Strohfeldt, K.; Schildbach, D.; McGrath, M. J.; O’ Brien, P. Organome-
tallics 2004, 23, 5389. (e) Strohmann, C.; Dilsky, S.; Strohfeldt, K.
Organometallics 2006, 25, 41. (f) Strohmann, C.; Da¨schlein, C.; Auer,
D. J. Am. Chem. Soc. 2006, 128, 704.
(5) (a) Hoffmann, D.; Collum, D. B. J. Am. Chem. Soc. 1998, 120, 5810. (b)
Rutherford, J. L.; Hoffmann, D.; Collum, D. B. J. Am. Chem. Soc. 2002,
124, 264.
(6) X-ray crystallography data for 1, 2, and 3 have been deposited with the
Cambridge Crystallographic Data Center as supplementary publication
Nos. CCDC 644635 (1), CCDC 644636 (2), and CCDC 644637 (3).
Figure 5. Molecular structure (crystal) (a), space-filling model (crystal)
(b) and Connolly surface mapped with electrostatic potential [B3LYP/6-
31+G(d) probe radius, 1.2 Å] of compound (S)-3.
clearly demonstrate the strong effect of the size of the alkyllithium
compound on the type of aggregation.
The monomeric compound 3 crystallizes in the orthorhombic
crystal system, space group P212121. In the crystal disorder of both
possible diastereomers, [(R)-s-BuLi‚(R,R)-TMCDA] and [(S)-s-
BuLi‚(R,R)-TMCDA], in a 55:45 ratio was observed and refined
using a split model (both diastereomers are shown in Figure 4).
Calculations at the B3LYP/6-31+G(d) level showed a marginal
energetic difference of 0.7 kJ‚mol-1 between the two diastereomers,
further confirming the coexistence of both in 3. The Li-C distances
[2.118(12) and 2.104(11) Å] and Li-N distances [2.054(5) to 2.076-
(6) Å] are typically shorter than in comparable dimeric compounds.7
Monomer 3 is the first Lewis base adduct of sec-butyllithium with
a known crystal structure and a rare example of a monomeric
saturated alkyllithium compound.4a,11 As compounds 2 and 3 show,
the oft-suggested structural analogy between i-PrLi and s-BuLi is
not in any case appropriate.
(7) Stey, T.; Stalke, D. In The Chemistry of Organolithium Compounds;
Rappoport, Z., Marek, I., Eds; Wiley: Chichester, U.K., 2004; Chapter
1.
(8) (a) Weiss, E.; Lambertsen, T.; Schubert, B.; Cockcroft, J. K.; Wiedenmann,
A. Chem. Ber. 1990, 79, 123. (b) Lucken, E. A. C.; Weiss, E. J.
Organomet. Chem. 1965, 2, 197. (c) Ko¨stner, H.; Thoennes, D.; Weiss,
E. J. Organomet. Chem. 1978, 160, 1. (d) Ogle, C. A.; Huckabee, B. K.;
Johnson, H. C., IV; Sims, P. F.; Winslow, S. D.; Pinkerton, A. A.
Organometallics 1993, 12, 1960.
(9) Walfort, B.; Lameyer, L.; Weiss, W.; Herbst-Irmer, R.; Bertermann, R.;
Rocha J.; Stalke, D. Chem.sEur. J. 2001, 7, 1417 (here, also a formal
monomer but with three C-Li contacts is discussed).
The monomeric s-BuLi‚(R,R)-TMCDA provides an impressive
demonstration of the structure/reactivity relationship of organo-
lithium compounds. As depicted by the space-filling model and
the Connolly surface of compound 3 (Figure 5) the lithium center
is barely shielded by the ligand and positively polarized. Thus it
offers a free coordination site for the formation of intermediates
via coordination of electrophiles in accordance to the CIPE
mechanism.12 The effects of the open lithium center are also seen
in the strong reactivity of 3, which is able to deprotonate non-
coordinating benzene and toluene in substoichiometric amounts of
(R,R)-TMCDA.
(10) Siemeling, U.; Redecker, T.; Neumann, B.; Stammler, H.-G. J. Am. Chem.
Soc. 1994, 116, 5507.
(11) Similar monomers: (a) Schu¨mann, U.; Kopf, J.; Weiss, E. Angew. Chem.,
Int. Ed. 1985, 24, 215. (b) Zarges, W.; Marsch, M.; Harms, K.; Boche,
G. Chem. Ber. 1989, 122, 2303. (c) Arnold, J.; Knapp, V.; Schmidt, J. A.
R.; Shafir, A. J. Chem. Soc., Dalton Trans. 2002, 3273. (d) Strohmann,
C.; Seibel, T.; Schildbach, D. J. Am. Chem. Soc. 2004, 126, 9876.
(12) Whisler, M. C.; MacNeil, S.; Snieckus, V.; Beak, P. Angew. Chem., Int.
Ed. 2004, 43, 2206.
(13) (a) Chadwick, S. T.; Rennels, R. A.; Rutherford, J. L.; Collum, D. B. J.
Am. Chem. Soc. 2000, 122, 8640. (b) Romesberg, F. E.; Collum, D. B. J.
Am. Chem. Soc. 1994, 116, 9187. (c) Chadwick, S. T.; Ramirez, A.; Gupta,
L.; Collum, D. B. J. Am. Chem. Soc. 2007, 129, 2259.
JA072970T
9
J. AM. CHEM. SOC. VOL. 129, NO. 29, 2007 8953