1614
A.M. Scutaru et al. / European Journal of Medicinal Chemistry 46 (2011) 1604e1615
CH2), 3.17 (m, 2H, 3 CH2), 3.30 (s, 4H, 4 CH2), 3.38 (m, 4H, 5 CH2),
3.68 (m, 8H þ 4H, 6 þ 7 CH2), 3.87 (m, 2H, 8 CH), 4.07 (m, 8H, 9
CH2), 4.34 (m, 2H, 10 CH2), 4.43 (m, 2H, 10 CH2), 4.55 (m, 1H, 11 CH),
4.64 (m, 1H, 11 CH), 7.56 (m, 4H, 12 CH), 7.61 (m, 4H, 13 CH). 13C
Acknowledgments
The presented study was supported by grants Gu285/4-1,
Gu285/5-1 and Gu285/5-2 as well as the SFB 765 from the Deutsche
Forschungsgemeinschaft.
NMR (CD3OD):
d
¼ 27.50 (CH2), 30.15 (CH2), 30.41 (2 CH2), 33.24 (3
CH2), 36.24 (7 CH2), 36.50 (5 CH2), 40.91 (9 CH2), 42.73 (6 CH2),
48.00 (4 CH2), 53.67 (11 CH), 55.24 (8 CH), 59.17 (10 CH2), 116.26 (13
CH), 131.99 (Caromatic), 132.09 (Caromatic), 145.09 (Caromatic), 170.50
(COO), 173.67 (COsuccinimide), 174.15 (COsuccinimide). MS (ESI): calcd.
for C50H74N8O8Cl4 1057.4436, found 1057.4456 (Chart 13).
Appendix. Supplementary data
Supplementary data related to this article can be found online at
References
4.3. Biological methods
[1] W. Ozegowski, D. Krebs, J. Prakt. Chem. 20 (1963) 178e186.
[2] B.D. Cheson, M.J. Rummel, J. Clin. Oncol. 27 (2009) 1492e1501.
[3] K.U. Chow, S. Boehrer, K. Geduldig, A. Krapohl, D. Hoelzer, P.S. Mitrou,
E. Weidmann, Haematologica 86 (2001) 485e493.
[4] A. Forero-Torres, M.N. Saleh, Clin. Lymphoma Myeloma 8 (2007) 13e17.
[5] S. Lonial, Clin. Lymphoma Myeloma 8 (2007) 18e23.
[6] G.L. Plosker, N.J. Carter, Drugs 68 (2008) 2645e2660.
[7] W. Ponisch, M. Rozanski, H. Goldschmidt, F.A. Hoffmann, T. Boldt,
A. Schwarzer, U. Ritter, R. Rohrberg, E. Schwalbe, J. Uhlig, T. Zehrfeld,
V. Schirmer, A. Haas, U. Kreibich, D. Niederwieser, Biochem. Pharmacol. 143
(2008) 191e200.
[8] D. Schrijvers, J.B. Vermorken, Semin. Oncol. 29 (2002) 15e18.
[9] E. Weidmann, S.Z. Kim, A. Rost, H. Schuppert, G. Seipelt, D. Hoelzer,
P.S. Mitrou, Ann. Oncol. 13 (2002) 1285e1289.
[10] M.A. Bergmann, M.E. Goebeler, M. Herold, B. Emmerich, M. Wilhelm, C. Ruelfs,
L. Boening, M.J. Hallek, Haematologica 90 (2005) 1357e1364.
[11] A. Ferrajoli, Haematologica 90 (2005) 1300A.
4.3.1. Cell culture
The human MCF-7 and MDA-MB-231 breast cancer cell lines
were obtained from the American Type Culture Collection (ATCC).
The MCF-7 breast cancer cell line originated from a 69-year-old
Caucasian woman and is a well-characterized estrogen receptor
(ER) positive control cell line (cells are positive for cytoplasmic
estrogen receptors). The human cell line MDA-MB-231 is a proto-
type for the study of hormone-independent breast cancer. Cell line
banking and quality control were performed according to the seed
stock concept reviewed by Hay [48]. Both cell lines were main-
tained in L-glutamine and sodium pyruvate containing DMEM High
Glucose (4.5 g/L) supplemented with 5% fetal calf serum (FCS,
Gibco) using 25 cm2 culture flasks in a humidified atmosphere (5%
CO2) at 37 ꢀC. The cell lines were passaged weekly after treatment
with trypsin (0.05%)/ethylenediaminetetraacetic acid (EDTA, 0.02%,
Boehringer). Mycoplasma contamination was regularly monitored
and only mycoplasma-free cultures were used.
[12] H. Koppler, J. Heymanns, A. Pandorf, R. Weide, Leuk. Lymphoma 45 (2004)
911e913.
[13] M.J. Keating, C. Bach, U. Yasothan, P. Kirkpatrick, Nat. Rev. Drug Discov. 7
(2008) 473e474.
[14] M.H.R. Eichbaum, F. Schuetz, T. Khbeis, I. Lauschner, F. Foerster, C. Sohn,
A. Schneeweiss, Anti-Cancer Drugs 18 (2007) 963e968.
[15] K. Hoffken, K. Merkle, M. Schoenfelder, G. Anger, M. Brandtner, K. Ridwelski,
S. Seeber, J. Cancer Res. Clin. Oncol. 124 (1998) 627e632.
[16] U. Reichmann, C. Bokemeyer, D. Wallwiener, M. Bamberg, J. Huober, Ann.
Oncol. 18 (2007) 1981e1984.
[17] R.L. Furner, R.K. Brown, Cancer Treat. Rep. 64 (1980) 559e574.
[18] R.B. Jones, Cancer Treat. Res. 112 (2002) 305e322.
[19] J.A.B. Balfour, K.L. Goa, Drugs 61 (2001) 631e638.
[20] S. Blumel, A. Goodrich,C. Martin,N.H. Dang, Clin. J. Oncol. Nurs. 12(2008)799e806.
[21] S.M. Konstantinov, A. Kostovski, M. Topashka-Ancheva, M. Genova, M.R. Berger,
J. Cancer Res. Clin. Oncol. 128 (2002) 271e278.
[22] M. Wickstroem, H. Loevborg, J. Gullbo, Lett. Drug Des. Discov. 3 (2006)
695e703.
[23] F. Bergel, J.A. Stock, J. Chem. Soc. (1960) 3658e3669.
[24] L. Kupczyk Subotkowska, K. Tamura, D. Pal, T. Sakaeda, T.J. Siahaan, V.J. Stella,
R.T. Borchardt, J. Drug Target. 4 (1997) 359e370.
[25] U. Beyer, T. Roth, P. Schumacher, G. Maier, A. Unold, A.W. Frahm, H.H. Fiebig,
C. Unger, F. Kratz, J. Med. Chem. 41 (1998) 2701e2708.
[26] F. Kratz, U. Beyer, T. Roth, M.T. Schuette, A. Unold, H.H. Fiebig, C. Unger, Arch.
Pharm. 331 (1998) 47e53.
[27] Y. Matsumura, H. Maeda, Cancer Res. 46 (1986) 6387e6392.
[28] H. Sinn, H.H. Schrenk, E.A. Friedrich, U. Schilling, W. Maierborst, Nucl. Med.
Biol. 17 (1990) 819e827.
[29] T. Kapp, A. Dullin, R. Gust, Bioconjug. Chem. 21 (2010) 328e337.
[30] A.M. Scutaru, M. Wenzel, H. Scheffler, G. Wolber, R. Gust, Bioconjug. Chem. 21
(2010) 1728e1743.
[31] T. Kapp, A. Dullin, R. Gust, J. Med. Chem. 49 (2006) 1182e1190.
[32] S. Okumoto, S. Yamabe, J. Org. Chem. 65 (2000) 1544e1548.
[33] I. Giraud, M. Rapp, J.C. Maurizis, J.C. Madelmont, J. Med. Chem. 45 (2002)
2116e2119.
[34] B. Neises, W. Steglich, Angew. Chem. Int. Edit. 17 (1978) 522e524.
[35] K. Bremer, W. Roth, Tumordiag. Ther. 17 (1996) 1e6.
[36] E.H.L. Chun, L. Gonzales, F.S. Lewis, J. Jones, R.J. Rutman, Cancer Res. 29 (1969)
1184e1194.
[37] I.G. Walker, B.D. Reid, Cancer Res. 31 (1971) 510e515.
[38] S.Y. Chang, D.S. Alberts, D. Farquhar, L.R. Melnick, P.D. Walson, S.E. Salmon,
J. Pharm. Sci. 67 (1978) 682e684.
[39] R. Gust, R. Krauser, Monatsh. Chem. 128 (1997) 291e299.
[40] W. Werner, G. Letsch, W. Ihn, Pharmazie 42 (1987) 272e273.
[41] B.A. Teicher, Cancer Principles and Practice of Oncology (1997) 405e418.
[42] M. Wickstroem, K. Viktorsson, L. Lundholm, R. Aesoy, H. Nygren, L. Sooman,
M. Fryknas, L.K. Vogel, R. Lewensohn, R. Larsson, J. Gullbo, Biochem. Phar-
macol. 79 (2010) 1281e1290.
4.3.2. In vitro chemosensitivity assays
Briefly, 100 m
L of a cell suspension of 7500 cells mLꢁ1 culture
medium were plated into each well of a 96-well microtiter plate and
incubated at 37 ꢀC for 3 days in a humidified atmosphere(5% CO2). By
adding an adequate volume of a stock solution of the appropriate
compound (solvent: DMF or methanol) to the medium, the desired
test concentrationwasobtained. After the properincubation time (0,
48, 72, 96, 120, 144 h) the medium was removed, and the cells were
fixed with a glutardialdehyde solution and stored under phosphate-
buffered saline (PBS) at 4 ꢀC. Cell biomass was determined by
a crystal violet staining technique described previously [49,50]. The
invitrocytotoxicitytestwas performed 3 times foreach substance. In
the diagrams, the vertical error bars on data points represent the
standard error of the mean.
The efficiencyofthe compoundsisexpressed ascorrected % T/Ccorr
values according to the following equations:
Cytostatic effect : %T=Ccorr ¼ ½ðT ꢁ C0Þ=ðC ꢁ C0Þꢂ100
Cytocidal effect : %
¼ ½ðT ꢁ C0Þ=C0ꢂ 100
(1)
s
(2)
in which T (test) and C (control) are the optical density values at
578 nm of the crystal violet extract of the cells in the wells (that is
the chromatin-bound crystal violet extracted with 70% ethanol),
and C0 is the density of the cell extract immediately before treat-
ment. A microplate reader at 590 nm (Flashscan Analytik Jena AG)
was used for the automatic estimation of the optical density of the
crystal violet extract in the wells. The calculated % T/C values can be
interpreted as follows:
T/Ccorr > 80%: no antiproliferative effect;
80% > T/Ccorr > 20%: antiproliferative effect;
20% > T/Ccorr > 0%: cytostatic effect;
[43] S. Fuchs, T. Kapp, H. Otto, T. Schoeneberg, P. Franke, R. Gust, A.D. Schlueter,
Chem.-Eur. J. 10 (2004) 1167e1192.
s
¼ T/Ccorr < 0%: cytocidal effect.
[44] W.J. Hopwood, J.A. Stock, Chem. Biol. Interact. 4 (1971) 31e39.