2174
E. Bellur, P. Langer
LETTER
(9) Langer, P.; Armbrust, H.; Eckardt, T.; Magull, J. Chem.–
Eur. J. 2002, 8, 1443; and references cited therein.
(10) Langer, P.; Holtz, E.; Saleh, N. N. R. Chem.–Eur. J. 2002, 8,
917.
Acknowledgment
Financial support from the DAAD (scholarship for E. B.) and from
the Deutsche Forschungsgemeinschaft is gratefully acknowledged.
(11) Typical Experimental Procedure for 5: To a CH2Cl2
solution (10 mL) of 4 (0.150 g, 0.6 mmol) was added BBr3
(0.605 g, 2.4 mmol) at 0 °C. The reaction mixture was
allowed to warm to 20 °C and was stirred for 24 h. Water (15
mL) was slowly added to the reaction mixture and the
organic layer was separated. The aqueous layer was
extracted with EtOAc (4 × 30 mL). The combined organic
extracts were dried (Na2SO4), filtered and the filtrate was
concentrated in vacuo. The residue was purified by
chromatography (silica gel, n-hexane–EtOAc, 100:1 to 1:1)
to give 5 (0.163 g, 92%) as a yellow oil. 1H NMR (300 MHz,
CDCl3): d = 2.34 (quint, J = 7.2 Hz, 2 H, CH2), 3.35 (t,
J = 7.5 Hz, 2 H, CH2), 3.47 (t, J = 6.9 Hz, 2 H, CH2-Br),
3.95 (s, 3 H, OCH3), 7.28–7.33 (m, 2 H, 2 × CH), 7.42–7.45
(m, 1 H, CH), 7.95–7.98 (m, 1 H, CH). 13C NMR (75 MHz,
CDCl3): d = 26.83, 30.80 (CH2), 32.41 (CH2-Br), 51.44
(OCH3), 109.17 (C=C-O), 110.88, 121.87, 123.86, 124.58
(CH), 125.82, 153.62 (C), 164.52 (O=C-O), 165.17 (O-
C=C). IR (neat): 2952 (m, C-H), 1714 (s, O=C-O), 1593 (s),
1478 (m), 1451 (s), 1437 (s), 1386 (m), 1342 (w), 1284 (m),
1235 (s), 1174 (s), 1127 (w), 1106 (m), 1073 (s), 1010 (w),
959 (w), 935 (w), 861 (w), 790 (m), 752 (s) cm–1. MS (EI, 70
eV): m/z (%) = 297 (38) [M+], 266 (7), 217 (16), 203 (10),
188 (100), 174 (5), 170 (29), 158 (47), 144 (4). Anal. Calcd
for C13H13O3Br (297.148): C, 52.55; H, 4.41. Found: C,
52.84; H, 4.74.
(12) (a) Wendt, B.; Ha, H. R.; Hesse, M. Helv. Chim. Acta 2002,
85, 2990. (b) Carlsson, B.; Singh, B. N.; Temciuc, M.;
Nilsson, S.; Li, Y.-L.; Mellin, C.; Malm, J. J. Med. Chem.
2002, 45, 623; and references cited therein. (c) Kwiecien,
H.; Baumann, E. J. Heterocycl. Chem. 1997, 1587.
(d) Larock, R. C.; Harrison, L. W. J. Am. Chem. Soc. 1984,
106, 4218.
(13) The reaction of 2-acetyl-g-butyrolactone with HBr has been
reported to give 1-bromopentan-4-one by ring-opening and
subsequent decarboxylation. See: (a) Cornish, C. A.;
Warren, S. J. Chem. Soc., Perkin Trans. 1 1985, 2585.
(b) Baldwin, J. E.; Li, C.-S. J. Chem. Soc., Chem. Commun.
1988, 261. (c) Wu, J.-M.; Li, Y. Tetrahedron Lett. 2001, 42,
6737.
References
(1) Review: (a) Bhatt, M. V.; Kulkarni, S. U. Synthesis 1983,
249. (b) See also: McOmie, J. F. W.; Watts, M. L.; West, D.
E. Tetrahedron 1968, 24, 2289.
(2) Cleavage of cyclic ethers: Kulkarni, S. U.; Patil, V. D.
Heterocycles 1982, 18, 163.
(3) Cleavage of lactones: Olah, G. A.; Karpeles, R.; Narang, S.
C. Synthesis 1982, 963.
(4) 7-Bromoheptane-2,4-dione has been prepared by reaction of
5-bromopent-1-yne with acetic anhydride: Tanabe, Y.;
Mukaiyama, T. Chem. Lett. 1985, 673.
(5) Lambert, P. H.; Vaultier, M.; Carrié, R. J. Org. Chem. 1985,
50, 5352.
(6) (a) Langer, P.; Holtz, E.; Karimé, I.; Saleh, N. N. R. J. Org.
Chem. 2001, 66, 6057. (b) Langer, P.; Bellur, E. J. Org.
Chem. 2003, 68, 9742. (c) For Suzuki reactions of 2-
alkylidenetetrahydrofurans, see: Bellur, E.; Langer, P.
Synlett, preceeding paper.
(7) Hampton, K. G.; Light, R. J.; Hauser, C. R. J. Org. Chem.
1965, 30, 1413.
(8) Typical Experimental Procedure for 2h: To a CH2Cl2
solution (5 mL) of 3h (0.130 g, 0.5 mmol) was added BBr3
(0.525 g, 2.1 mmol) at 0 °C. The reaction mixture was
allowed to warm to 20 °C during 12 h. Water (2 mL) was
added and the solution was stirred for 3 h at 20 °C. The
solvent was removed in vacuo and the residue was purified
by column chromatography (silica gel, n-hexane–EtOAc,
30:1 to 1:1) to give 2h as a brownish solid (0.118 g, 72%).
The product mainly resides in the keto tautomeric form
(keto–enol = 10:1). 1H NMR (300 MHz, CDCl3): d = 2.09
(quint, J = 6.6 Hz, 2 H, CH2), 2.68 (t, J = 6.9 Hz, 2 H, CH2),
3.35 (t, J = 6.9 Hz, 2 H, CH2-Br), 3.76 (s, 3 H, OCH3), 4.70
(s, 1 H, CH), 5.65 (br, 1 H, OH), 6.83 (d, J = 8.7 Hz, 2 H,
Ar), 7.20 (d, J = 8.7 Hz, 2 H, Ar), 13.03 (br, 1 H, enol from,
OH). 13C NMR (75 MHz, CDCl3): d = 26.33, 32.69 (CH2),
39.44 (CH2-Br), 52.76 (OCH3), 63.92 (CH), 103.92 (C=C-O,
enol), 115.96 (CH), 123.71 (C), 130.55 (CH), 156.08 (C),
169.64 (O=C-O), 175.04 (O-C=C, enol), 203.55 (C=O). IR
(KBr): 3396 (m, OH), 3184 (w), 2957 (w, C-H), 1735 (s,
O=C-O), 1703 (s, C=O), 1614 (w), 1594 (w), 1516 (s), 1439
(m), 1359 (m), 1335 (w), 1302 (w), 1274 (m), 1249 (m),
1213 (s), 1161 (m), 1095 (w), 991 (w), 832 (w), 557 (w), 528
(w) cm–1. MS (EI, 70 eV): m/z (%) = 315 (1) [M+], 284 (14),
234 (5), 203 (1), 175 (5), 165 (85), 150 (29), 118 (3), 109
(100), 106 (55). Anal. Calcd for C13H15O4Br (315.163): C,
49.54; H, 4.80. Found: C, 49.63; H, 5.03. All products gave
satisfactory spectroscopic and analytical and/or high-
resolution mass data.
(14) For syntheses and reactions of 7a, see: (a) Almirante, N.;
Forti, L. J. Heterocycl. Chem. 1984, 21, 1121.
(b) Schuhmacher, H.; Meier, H. Z. Naturforsch. B 1992, 47,
563. (c) Fittig, F.; Stroem, A. Liebigs Ann. Chem. 1892,
267, 192. (d) Burdick, H. E.; Adkins, H. J. Am. Chem. Soc.
1934, 56, 438. (e) Farlow, M.; Burdick, H. E.; Adkins, H. J.
Am. Chem. Soc. 1934, 56, 2498. (f) For an unsymmetrical
derivative, see: Ponomarew, M.; Monachowa, M. J. Gen.
Chem. USSR 1964, 34, 1242.
Synlett 2004, No. 12, 2172–2174 © Thieme Stuttgart · New York