Organic Letters
Letter
also show the appearance of the same Ni(0) peak just after 1
min which remains until the end of the reaction (see SI).20 The
Ni(0) undergoes fast oxidative addition with styrenyl and vinyl
halides leading to the intermediate A. In the other cycle, it is
most likely that CuI interacts with a nucleophile, phenol in the
presence of base (Cs2CO3), to form the intermediate B
(Scheme 8) and subsequently the nucleophile is transferred
REFERENCES
■
(1) (a) El-Nabi, H. A. A. Tetrahedron 1997, 53, 1813. (b) Firl, J.;
Sommer, S. Tetrahedron Lett. 1970, 1929.
(2) Maligres, P. E.; Waters, M. M.; Lee, J.; Reamer, R. A.; Askin, D. J.
Org. Chem. 2002, 67, 1093.
(3) Fujimura, O.; Fu, G. C.; Grubbs, R. H. J. Org. Chem. 1994, 59,
4029.
(4) (a) Monte, A.; Kabir, M. S.; Cook, J. M.; Rott, M.; Schwan, W.
R.; Defoe, L. U.S. Pat. Appl. Publ. 2007, 37. (b) Hormi, O. E. O.;
Hirvela, L. Tetrahedron Lett. 1993, 34, 6463. (c) Gopal, D.;
Rajagopalan, Z. Tetrahedron Lett. 1987, 28, 5327.
Scheme 8. Possible Mechanistic Pathway for Ni−Cu
Catalyzed O-Vinylation
(5) (a) Green, T. W.; Wuts, P. G. M. Protecting groups, 3rd ed.;
Wiley: New York, 1991; p 619. (b) Chen, Y. L.; Hedberg, K. G.;
Guarino, K. J. Tetrahedron Lett. 1989, 30, 1067.
(6) (a) Ying, J.; Bauld, N. L. J. Org. Chem. 1999, 64, 9251.
(b) Okimoto, Y.; Sakaguchi, S.; Ishii, Y. J. Am. Chem. Soc. 2002, 124,
1590. (c) Suprenant, S.; Chan, W. Y.; Berthelette, C. Org. Lett. 2003, 5,
4851. (d) Winternheimer, D. J.; Shade, R. E.; Merlic, C. A. Synthesis
2010, 2497.
(7) Willis, M. C.; Taylor, D.; Gillmore, A. T. Chem Commun. 2003,
2222.
(8) (a) Taillefer, M.; Ouali, A.; Renard, B.; Spindler, J. −F. Chem.
Eur. J. 2006, 12, 5301. (b) Kabir, M. S.; Lorenz, M.; Namjoshi, O. A.;
Cook, J. M. Org. Lett. 2010, 12, 464. (c) Limberger, J.; Leal, B. C.;
Back, D. F.; Dupont, J.; Monterio, A. L. Adv. Synth. Catal. 2012, 354,
1429. (d) Jouvin, K.; Bayle, A.; Legrand, F.; Evano, G. Org. Lett. 2012,
14, 1652. (e) Wan, Z.; Jones, C. D.; Koenig, T. M.; Pu, Y. J.; Mitchell,
D. Tetrahedron Lett. 2003, 44, 8257.
(9) (a) Zhao, Y.-L.; Wu, G.-J.; Li, L.-X.; Gao, Y.; Han, F.-S. Chem.
Eur. J. 2012, 18, 9622. (b) Brachet, E.; Brion, J.-D.; Alami, M.;
Messaoudi, S. Chem.Eur. J. 2013, 19, 15276. (c) Chakraborty, S.;
Patel, Y. J.; Krause, J. A.; Guan, H. Angew. Chem., Int. Ed. 2013, 52,
7523.
(10) (a) Kundu, D.; Bhadra, S.; Mukherjee, N.; Sreedhar, B.; Ranu, B.
C. Chem.Eur. J. 2013, 19, 15759. (b) Kundu, D.; Chatterjee, T.;
Ranu, B. C. Adv. Synth. Catal. 2013, 355, 2285.
(11) Zhang, W.-S.; Xu, W.-J.; Zhang, F.; Qu, G.-R. Chin. Chem. Lett.
2013, 24, 407.
from CuI to NiII through transmetalation leading to the
formation of intermediate C which on reductive elimination
provides the product.
In conclusion, we have developed a convenient and efficient
protocol for the synthesis of vinyl aryl ether catalyzed by a
unique Ni−Cu homogeneous catalytic system. The significant
feature of this protocol is the catalysis by Ni and participation
of Cu in the transmetalation process under ligand-free
conditions. We are not aware of any C−O bond formation
catalyzed by Ni metal salt, and thus this report of C(sp2)−O
cross-coupling is the first one. The other advantages of this
protocol are broad functional group tolerance including strong
electron-withdrawing functionality, high stereoselectivity, use of
an inexpensive and relatively benign catalyst with low loading,
ligand-free conditions, operational simplicity, and high yields.
This concept of catalysis by Ni with the assistance of another
transition metal such as Cu is of high potential, and further
investigation for other useful cross-coupling reactions is
currently in progress.
(12) Dehli, J. R.; Legros, J.; Bolm, C. Chem Commun. 2005, 973.
(13) Dimorth, K.; Follmann, H.; Pohl, G. Chemische Bericht 1966, 99,
642.
(14) (a) Gujadhur, R. K.; Venkataraman, D. Synth. Commun. 2001,
31, 2865. (b) Moroz, A. A.; Shvartsberg, M. S. Russ. Chem. Rev. 1974,
43, 679.
(15) Cui, S.-L.; Wang, J.; Lin, X.-F.; Wang, Y.-G. J. Org. Chem. 2007,
72, 7779.
(16) Sarrafi, Y.; Sadatshahabi, M.; Alimohammadi, K.; Tajbakhsh, M.
Green Chem. 2011, 13, 2851.
(17) THF has been used as a trap for aryl radicals in investigation of
mechanism in Ullmann coupling. See: Cohen, T.; Cristea, I. J. Am.
Chem. Soc. 1976, 98, 748.
(18) (a) King, A. E.; Ryland, B. L.; Brunold, T. C.; Stahl, S. S.
Organometallics 2012, 31, 7948. (b) Casitas, A.; King, A. E.; Parella, T.
M.; Costas, S.; Stahl, S.; Ribas, X. Chem Sci. 2010, 1, 326.
(19) (a) Nouneh, K.; Oyama, M.; Diaz, R.; -Lefdil, M. A.; Kityk, I. V.;
Bousmina, M. J. Alloys Compd. 2011, 509, 5882. (b) Zhang, J.; Lan, C.
Q. Mater. Lett. 2008, 62, 1521.
ASSOCIATED CONTENT
* Supporting Information
■
S
Typical experimental procedure and characterization data of all
1
products and copies of their H and 13C NMR spectra. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
■
(20) See Supporting Information for full reference.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are pleased to acknowledge the financial support from
DST, New Delhi through an award of JCB Fellowship to B.C.R.
(Grant No. SR/S2/JCB-11/2008). D.K. and P.M. thank CSIR
for their fellowships.
1043
dx.doi.org/10.1021/ol500134p | Org. Lett. 2014, 16, 1040−1043