described, using catalytic amounts of various chiral mediators.4
Recently, synthetic methods involving numerous lanthanide
triflates have been reported.5 High catalytic activity, moisture,
and air tolerance make lanthanide triflates attractive catalysts.
However, their cost often restricts their utilization.
Diastereoselective Mukaiyama Aldol Reaction of
2-(Trimethylsilyloxy)furan Catalyzed by Bismuth
Triflate
Thierry Ollevier,* Jean-Emmanuel Bouchard, and
Valerie Desyroy
To our knowledge, all racemic examples up to now of
vinylogous Mukaiyama aldol with silyloxyfurans have employed
Lewis acids such as SnCl4, ZnCl2, TiCl4, BF3‚OEt2, SiCl4, or
silyl triflates.6 Yet, moisture sensitivity of these catalysts and
the high cost of some of them often restrain their use. In
addition, all reported racemic reactions were involving the Lewis
acid in large amounts or even in stoichiometric amount.6 In view
of the versatile synthetic utility of 5-(hydroxy(aryl)methyl)furan-
2(5H)-ones and 5-(hydroxy(alkyl)methyl)furan-2(5H)-ones, for
example, for the preparation of γ-alkylidene-butenolides,7 there
is clearly a need for practical and efficient conditions that
involve a bench-stable catalyst, used in very low loading.
As a part of our ongoing interest in bismuth(III)-catalyzed
aldol condensation reactions,8 we report herein a bismuth(III)-
catalyzed vinylogous Mukaiyama aldol reaction. Aldols are
De´partement de chimie, UniVersite´ LaVal, Que´bec,
Canada G1K 7P4
ReceiVed September 23, 2007
obtained efficiently in the presence of
1 mol % of
Bi(OTf)3‚4H2O. Bismuth compounds have attracted recent
attention due to their low toxicity, low cost, and high stability.9
Bismuth salts have been reported as catalysts for opening of
epoxides,10 Mannich-type reactions,11 formation and deprotec-
We have developed an efficient vinylogous Mukaiyama aldol
reaction of 2-(trimethylsilyloxy)furan with various aromatic
aldehydes mediated by bismuth triflate in low catalyst loading
(1 mol %). The reaction proceeds rapidly and affords the
corresponding 5-(hydroxy(aryl)methyl)furan-2(5H)-ones in
high yields with good to very good diastereoselectivities (dr
up to >98:2). Such selectivities, albeit previously reported
with other Lewis acids, could this time be achieved with a
much lower catalyst loading. 5-(Hydroxy(alkyl)methyl)furan-
2(5H)-ones derived from ketones could also be obtained with
good diastereoselectivities.
(4) (a) For a review on enantioselective vinylogous Mukaiyama aldol,
see: Denmark, S. E.; Heemstra, J. R., Jr.; Beutner, G. L. Angew. Chem.,
Int. Ed. 2005, 44, 4682-4698. (b) Matsuoka, Y.; Irie, R.; Katsuki, T. Chem.
Lett. 2003, 32, 584-585. (c) Szlozek, M.; Figade`re, B. Angew. Chem., Int.
Ed. 2000, 39, 1799-1801. (d) Szlozek, M.; Franck, X.; Figade`re, B.; Cave´,
A. J. Org. Chem. 1998, 63, 5169-5172. (e) Palombi, L.; Acocella, M. R.;
Celenta, N.; Massa, A.; Villano, R.; Scettri A. Tetrahedron: Asymmetry
2006, 17, 3300-3303. (f) For a recent organocatalytic approach, see: Nagao,
H.; Yamane, Y.; Mukaiyama, T. Chem. Lett. 2007, 36, 8-9.
(5) (a) Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W. L. Chem.
ReV. 2002, 102, 2227-2302. (b) Kobayashi, S.; Hamada, T.; Nagayama,
S.; Manabe, K. Org. Lett. 2001, 3, 165-167. (c) Kobayashi, S.; Hachiya,
I.; Takahori, T. Synthesis 1993, 371-373. (d) Kobayashi, S.; Hachiya, I.
Tetrahedron Lett. 1992, 33, 1625-1628.
The aldol reaction is well recognized as one of the most
powerful synthetic tools for a fast carbon-carbon bond con-
nection. This route provides rapid access to â-hydroxy carbonyl
compounds, which have attracted much synthetic efforts and
enjoyed widespread use in natural products and bioactive
molecules synthesis.1 The Mukaiyama aldol reaction and its
variants are probably the most notable achievements that have
been made in the field by focusing on the addition of enolsilanes
to aldehydes in the presence of catalytic amounts of Lewis
acids.2
(6) For reviews on vinylogous aldol reaction with silyloxyfurans, see:
(a) Rassu, G.; Zanardi, F.; Battistini, L.; Casiraghi, G. Synlett 1999, 1333-
1350. (b) Casiraghi, G.; Rassu, G. Synthesis 1995, 607-626. For original
reports: (c) Jefford, C. W.; Jaggi, D.; Boukouvalas, J. Tetrahedron Lett.
1987, 28, 4037-4040. (d) Acocella, M. R.; De Rosa, M.; Massa, A.;
Palombi, L.; Villano, R.; Scettri A. Tetrahedron 2005, 61, 4091-4097. (e)
Kong, K.; Romo, D. Org. Lett. 2006, 8, 2909-2912. (f) Yoshii, E.; Koizumi,
T.; Kitatsuji, E.; Kawazoe, T.; Kaneko, T. Heterocycles 1976, 4, 1663-
1668. (g) Boukouvalas, J.; Maltais, F.; Lachance, N. Tetrahedron Lett. 1994,
35, 7897-7900. (h) Lo´pez, C. S.; AÄ lvarez, R.; Vaz, B.; Faza, O. N.; de
Lera, A. R. J. Org. Chem. 2005, 70, 3654-3659. (i) Sarma, K. D.; Zhang,
J.; Curran, T. T. J. Org. Chem. 2007, 72, 3311-3318. (j) For a recent
organocatalytic approach, see: De Rosa, M.; Citro, L.; Soriente, A.
Tetrahedron Lett. 2006, 47, 8507-8510.
(7) (a) von der Ohe, F.; Bru¨ckner, R. New J. Chem. 2000, 24, 659-669.
(b) von der Ohe, F.; Bru¨ckner, R. Tetrahedron Lett. 1998, 39, 1909-1910.
(c) Go¨rth, F. C.; Umland, A.; Bru¨ckner, R. Eur. J. Org. Chem. 1998, 1055-
1062. (d) Go¨rth, F. C.; Bru¨ckner, R. Synthesis 1999, 1520-1528.
(8) (a) Ollevier, T.; Desyroy, V.; Debailleul, B.; Vaur, S. Eur. J. Org.
Chem. 2005, 4971-4973. (b) Ollevier, T.; Desyroy, V.; Nadeau, E.
ARKIVOC 2007, x, 10-20.
The vinylogous Mukaiyama aldol reaction rapidly provides
5-(hydroxy(aryl)methyl)furan-2(5H)-ones by addition of the γ
carbon of a dienolate on a carbonyl framework.3 Over past years,
some elegant enantioselective versions of this reaction have been
(1) Shiina, I. In Modern Aldol Reactions; Mahrwald, R., Ed.; Wiley-
VCH: Weinheim, 2004; Vol. 2, pp 105-166.
(2) (a) Mukaiyama, T.; Narasaka, K.; Banno, K. Chem. Lett. 1973, 1011-
1014. (b) Mukaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem. Soc. 1974,
96, 7503-7509. For reviews of catalytic Mukaiyama aldol reactions: (c)
Mukaiyama, T.; Matsuo, J.-i. In Modern Aldol Reactions; Mahrwald, R.,
Ed.; Wiley-VCH: Weinheim, 2004; Vol. 1, pp 127-160. (d) Carreira, E.
M. in ComprehensiVe Asymmetric Catalysis I-III; Jacobsen, E. N., Pfaltz,
A., Yamamoto, H., Eds.; Springer-Verlag: Berlin, Germany, 1999; Vol. 3,
pp 997-1065.
(9) (a) Organobismuth Chemistry; Suzuki, H.; Matano, Y., Eds.;
Elsevier: Amsterdam, 2001. (b) Gaspard-Iloughmane, H.; Le Roux, C. Eur.
J. Org. Chem. 2004, 2517-2532. (c) Leonard, N. M.; Wieland, L. C.;
Mohan, R. S. Tetrahedron 2002, 58, 8373-8397.
(10) (a) Ogawa, C.; Azoulay, S.; Kobayashi, S. Heterocycles 2005, 66,
201-206. (b) Ollevier, T.; Lavie-Compin, G. Tetrahedron Lett. 2004, 45,
49-52. (c) Ollevier, T.; Lavie-Compin, G. Tetrahedron Lett. 2002, 43,
7891-7893.
(3) For a recent review, see: Casiraghi, G.; Zanardi, F.; Appendino, G.;
Rassu, G. Chem. ReV. 2000, 100, 1929-1972.
10.1021/jo702085p CCC: $40.75 © 2008 American Chemical Society
Published on Web 12/11/2007
J. Org. Chem. 2008, 73, 331-334
331