2
080
Organometallics 2004, 23, 2080-2086
Sp ectr oscop ic Stu d ies of Tr ibu tylsta n n yl Ra d ica l. Ra tes
of F or m a tion , Ter m in a tion , a n d Abstr a ction Deter m in ed
by Tr a n sien t Absor p tion Sp ectr oscop y
Wendy J . Shaw, Pramod Kandandarachchi, J ames A. Franz, and Tom Autrey*
Pacific Northwest National Laboratory, Fundamental Science Division,
POB 999 MS#K2-57, Richland, Washington 99352
Received J anuary 26, 2004
Transient absorption spectroscopy (TAS) was used to measure the rate of formation and
the rate of self-termination of the main group metal hydride, tri-n-butyltin hydride (Bu
SnH). Irradiation of di-tert-butyl peroxide in the presence of Bu SnH generates the tri-n-
Sn ) by hydrogen atom abstraction. Analysis of the growth of the
3
-
3
•
butylstannyl radical (Bu
3
•
8
-1
Bu
s
3
Sn at 400 nm, corrected for radical termination, yields kH-abs ) (3.5 ( 0.3) × 10 M
. The extinction coefficient of the Bu Sn (ꢀ ) 1620 ( 40 cm at 400 nm), measured
for the first time in this work, is 3.5 times greater than the literature estimate. The
-
1
•
-1
-1
3
M
•
3 3
experimental value for ꢀ(Bu Sn ) permits the quantitative measurement of the rate of Bu -
•
9
-1 -1
Sn self-termination (2k
t
) (3.6 ( 0.3) × 10 M
s ) in benzene at 296 K. This experimental
value is greater than previous literature estimates but less than predicted by the
Smoluchowski equation (2k
s
9
-1 -1
t
) (4.4 ( 0.2) × 10 M
s ) using our measured diffusion
-
5
2
-1
coefficient for tin hydride (D ) (1.34 ( 0.08) × 10 cm s at 296 K in benzene). This work
shows that the rates of hydrogen abstraction from Bu
3
SnH by tert-butoxyl radical and self-
Sn are both more rapid than previously reported. A mechanistic kinetic
model was developed with this new kinetic information to fit the time-dependent TAS signal
•
termination of Bu
3
•
3
of Bu Sn . This approach provides the optimum reaction conditions, both low hydride and
halide concentrations, to measure the rate of bromine atom abstraction from 2-phenethyl
7
-1 -1
bromide (kBr-abs ) (3.7 ( 0.3) × 10 M
s ).
In tr od u ction
experimental conditions favoring competing path-
4
,5
ways, and empirical corrections used to correct bond
Main group metal hydrides are important hydrogen
6
enthalpies prompted us to undertake a closer examina-
atom donors utilized in synthetic free radical strategies
and as hydrogen atom donors in fundamental studies
tion of the spectroscopic properties of the tri-n-butyl-
•
stannyl radical (Bu3Sn ). An improved understanding
1
of organic free radicals. Tin hydride and the corre-
of the spectroscopic, kinetic, and thermodynamic prop-
erties of the tin hydride and stannyl radical is necessary
to improve the accuracy of basis rate determinations for
competitive rate studies. In particular, an Arrhenius
rate expression for halide abstraction by the stannyl
radical from 2-phenethyl bromide would provide an
important basis reaction in our competitive rate stud-
sponding stannyl radical in particular have been used
as kinetic and thermodynamic standards for developing
basis rate reactions.2 However, discrepancies in the
literature regarding the self-termination rate due to
ambiguities reported for the optical properties of the
3
stannyl radical, kinetic measurements performed under
7
ies.
*
Corresponding author: E-mail: tom.autrey@pnl.gov.
(
1) (a) Chatgilialoglu, C. In Radicals in Organic Synthesis; Renaud,
Scheme 1 shows the detailed mechanistic pathway for
the radical chain reduction of alkyl halides (RX f RH).
Irradiation of a photoinitiator, di-tert-butyl peroxide,
with a pulsed laser leads to the prompt (within the 20
ns laser pulse) formation of tert-butoxyl radicals (t-
P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001; pp 28-49. (b)
Gilbert, B. C.; Parsons, A. F. J . Chem. Soc., Perkin Trans 2 2002, 367.
c) Baker, S. R., Parsons, A. F.; Pons, J .-F.; Wilson, M. Tetrahedron
(
Lett. 1998, 39, 7197. (d) Ryu, I.; Araki, F.; Minakata, S.; Komatsu, M.
Tetrahedron Lett. 1998, 39, 6335. (e) Spanswick, J .; Ingold, K. U. Int.
J . Chem. Kinet. 1970, 2, 157. (f) Carlsson, D. J .; Ingold, K. U. J . Am.
Chem. Soc. 1968, 90, 7047. (g) McIlroy, S.; Moran, R. J .; Falvey, D. E.
J . Phys. Chem. A 2000, 104, 11154. (h) Sibi, M. P.; Porter, N. A. Acc.
Chem. Res. 1999, 32, 163-171.
•
BuO ), eq 1. In the presence of tin hydride (Bu3SnH)
•
the t-BuO abstracts a H atom to yield t-BuOH and Bu3-
•
•
Sn , eq 2. In the absence of halide, the Bu3Sn will be
consumed by radical self-termination at diffusion-
(
2) (a) Chatgilialoglu, C.; Newcomb, M. Adv. Organomet. Chem.
999, 44, 67-112. (b) Galli, C.; Pau, T. Tetrahedron 1998, 54, 2893.
c) Crich, D.; Recupero, F. Chem. Commun. 1998, 189. (d) Franz, J .
1
(
A.; Suleman, N. K.; Alnajjar, M. S. J . Org. Chem. 1986, 51, 19. (e)
Musa, O. M.; Horner, J . H.; Shahin, H.; Newcomb, M. J . Am. Chem.
Soc. 1996, 118, 3862. (f) Walling, C.; Cioffari, A. J . Am. Chem. Soc.
(4) Scaiano, J . C. J . Am. Chem. Soc. 1980, 102, 5399.
(5) Ingold, K. U.; Lusztyk, J .; Scaiano, J . C. J . Am. Chem. Soc. 1984,
106, 343. Reaction conditions for bromide abstraction: tin hydride 10
wt %, propyl bromide 20-100 mM.
(6) Laarhoven, L. J . J .; Mulder, P.; Wayner, D. D. M. Acc. Chem.
Res. 1999, 32, 342.
1
5
972, 94, 6059. (g) Lemieux, R. P.; Beak, P. J . Org. Chem. 1990, 55,
454. (h) J ohnston, L. J .; Lusztyk, J .; Wayner, D. D. M.; Abeywick-
reyma, A. N.; Beckwith, A. L. J .; Scaiano, J . C.; Ingold, K. U. J . Am.
Chem. Soc. 1985, 107, 4594.
(
3) Nau, W. M.; Cozens, F. L.; Scaiano, J . C. J . Am. Chem. Soc. 1996,
(7) Shaw, W. J .; Lamb, C. N.; Autrey, T.; Kolwaite, D.; Camaioni,
D. M.; Alnajjar, M. S.; Franz, J . A. J . Org. Chem. 2004, 69, 1020.
1
18, 2275.
1
0.1021/om049933k CCC: $27.50 © 2004 American Chemical Society
Publication on Web 04/01/2004