C O M M U N I C A T I O N S
W. H. SPIE Proc. 2003, 4991, 508. (b) Dalton, L. AdV. Polym. Sci. 2002,
158, 1. (c) Dalton, L. R.; Steier, W. H.; Robinson, B. H.; Zhang, C.; Ren,
A.; Garner, S.; Chen, A.; Londergan, T.; Irwin, L.; Carlson, B.; Fifield,
L.; Phelan, G.; Kincaid, C.; Amend, J.; Jen, A. J. Mater. Chem. 1999, 9,
1905. (d) Molecular Nonlinear Optics: Materials, Phenomena and Devices;
Zyss, J., Ed. Chem. Phys. 1999, 245 (Special issue). (e) Verbiest, T.;
Houbrechts, S.; Kauranen, M.; Clays, K.; Persoons, A. J. Mater. Chem.
1997, 7, 2175. (f) Marks, T. J.; Ratner, M. A. Angew. Chem., Int. Ed.
Engl. 1995, 34, 155.
(2) Oudar, J. L.; Chemla, D. S. J. Chem. Phys. 1977, 66, 2664.
(3) (a) Staub, K.; Levina, G. A.; Barlow, S.; Kowalczyk, T. C.; Lackritz, H.
S.; Barzoukas, M.; Fort, A.; Marder, S. R. J. Mater. Chem. 2003, 13,
825. (b) Abbotto, A.; Beverina, L.; Bradamante, S.; Facchetti, A.; Klein,
C.; Pagani, G. A.; Redi-Abshiro, M.; Wortmann, R. Chem. Eur. J. 2003,
9, 1991. (c) Barlow, S.; Marder, S. R. Chem. Commun. 2000, 1555. (d)
Jen, A. K.-Y.; Ma, H.; Wu, X.; Wu, J.; Liu, S.; Marder, S. R.; Dalton, L.
R.; Shu, C.-F. SPIE Proc. 1999, 3623, 112. (e) Marder, S. R.; Kippelen,
B.; Jen, A. K.-Y.; Peyghambarian, N. Nature 1997, 388, 845. (f) Albert,
I. D. L.; Marks, T. J.; Ratner, M. A. J. Am. Chem. Soc. 1997, 119, 6575.
Figure 1. (A) Optical absorption spectra of X-chromophore SA films grown
on fused quartz. (Inset) Optical absorbance of films at λmax ) 325 nm as a
function of the number of layers. (B) Square-root of film 532 nm SHG
response (I2ω, arbitrary units) as a function of the number of layers. (Inset)
SHG response as a function of fundamental beam incident angle from a
float glass slide having a film on either side.
(4) Galvan-Gonzalez, A.; Belfield, K. D.; Stegeman, G. I.; Canva, M.; Marder,
S. R.; Staub, K.; Levina, G.; Twieg, R. J. J. Appl. Phys. 2003, 94, 756
and references therein.
(5) (a) Sullivan, P. A.; Bhattacharjee, S.; Eichinger, B. E.; Firestone, K.;
Robinson, B. H.; Dalton, L. R. SPIE Proc. 2004, 5351, 253. (b) Qin, A.;
Yang, Z.; Bai, F.; Ye, C. J. Polym. Sci., Part A 2003, 41, 2846. (c) Kang,
H.; Li, S.; Wang, P.; Wu, W.; Ye, C. Synth. Met. 2001, 121, 1469. (d)
Wang, P.; Zhu, P.; Wu, W.; Kang, H.; Ye, C. Phys. Chem. Chem. Phys.
1999, 1, 3519.
Scheme 2. Self-Assembly of the X Chromophore
(6) (a) Yang, M.; Champagne, B. J. Phys. Chem. A 2003, 107, 3942. (b)
Ostroverkhov, V.; Petschek, R. G.; Singer, K. D.; Twieg, R. J. Chem.
Phys. Lett. 2001, 340, 109. (c) Van Elshocht, S.; Verbiest, T.; Kauranen,
M.; Ma, L.; Cheng, H.; Musick, K.; Pu, L.; Persoons, A. Chem. Phys.
Lett. 1999, 309, 315. (d) Wong, M. S.; Nicoud, J.-F.; Runser, C.; Fort,
A.; Barzoukas, M.; Marchal, E. Chem. Phys. Lett. 1996, 253, 141.
(7) (a) Traber, B.; Wolff, J. J.; Rominger, F.; Oeser, T.; Gleiter, R.; Goebel,
M.; Wortmann, R. Chem. Eur. J. 2004, 10, 1227. (b) Wolff, J. J.; Segler,
F.; Matschiner, R.; Wortmann, R. Angew. Chem., Int. Ed. 2000, 39, 1436.
(c) Brasselet, S.; Cherioux, F.; Audebert, P.; Zyss, J. Chem. Mater. 1999,
11, 1915. (d) Lee, Y.-K.; Jeon, S.-J.; Cho, M. J. Am. Chem. Soc. 1998,
120, 10921. (e) Brasselet, S.; Zyss, J. J. Opt. Soc. Am. B 1998, 15, 257.
(8) (a) Kuo, W.-J.; Hsiue, G.-H.; Jeng, R.-J. Macromolecules 2001, 34, 2373.
(b)Yamamoto, H.; Katogi, S.; Watanabe, T.; Sato, H.; Miyata, S.; Hosomi,
T. Appl. Phys. Lett. 1992, 60, 935.
remarkably short wavelength of 325 nm (Figure 1A). The further
blue-shifting of the film λmax vs solution is consistent with
intermolecular dipole-dipole coupling in the closely packed
chromophore layers, where strong π-π interactions are possible.13b,14
The linear dependence of the 325 nm absorbance on the number
of layers indicates that essentially equal quantities of equivalently
oriented chromophore molecules are deposited in forming each
layer. Polarized transmission second harmonic generation (SHG)
measurements at λo ) 1064 nm yield angle-dependent interference
patterns for glass substrates coated on both sides (Figure 1B inset)
that demonstrate essentially identical film quality and uniformity
are achieved on both sides of the substrates. The quadratic
dependence of the 532 nm output intensity (I2ω) on film thickness
(Figure 1B) further demonstrates polar microstructure preservation
as layer-by-layer assembly progresses. The films exhibit large
(9) AM1/ZINDO computations predict âω)0 ) 407 × 10-30 esu (âω)0/Mw
)
0.56 × 10-30 esu) with a HOMO-LUMO CT excitation λmax ) 369 nm
vs âω)0 ) 312 × 10-30 esu (âω)0/Mw ) 0.77 × 10-30 esu) with λmax
)
551 nm for the analogous 1D chromophore:
(10) (a) Facchetti, A.; Abbotto, A.; Beverina, L.; van der Boom, M. E.; Dutta,
P.; Evmenenko, G.; Pagani, G. A.; Marks, T. J. Chem. Mater. 2003, 15,
1064. (b) Zhu, P.; van der Boom, M. E.; Kang, H.; Evmenenko, G.; Dutta,
P.; Marks, T. J. Chem. Mater. 2002, 14, 4982. (c) van der Boom, M. E.;
Zhu, P.; Evmenenko, G.; Malinsky, J. E.; Lin, W.; Dutta, P.; Marks, T.
J. Langmuir 2002, 18, 3704. (d) Lin, W.; Lin, W.; Wong, G. K.; Marks,
T. J. J. Am. Chem. Soc. 1996, 118, 8034. (e) Yitzchaik, S.; Marks, T. J.
Acc. Chem. Res. 1996, 29, 197.
(2)
second-order nonresonant macroscopic NLO responses ø33 ≈ 232
pm/V at 1064 nm (obtained by calibration vs quartz), translating
to an estimated EO coefficient r33 ≈ 43 pm/V at 1550 nm.15
In summary, an “X-shaped” 2D EO chromophore with extended
orthogonal conjugation was designed and synthesized. Self-as-
sembled thin films of this chromophore were fabricated via a layer-
by-layer chemisorptive siloxane-based approach. The chromophoric
film exhibits a dramatically blue-shifted optical maximum (325 nm)
(11) See Supporting Information for details.
(12) Dipolar molecule aggregation in solution is most frequently studied by
optical spectrospy: (a) Wu¨rthner, F.; Yao, S.; Debaerdemaeker, T.;
Wortmann, R. J. Am. Chem. Soc. 2002, 124, 9431. (b) Iverson, I. K.;
Casey, S. M.; Seo, W.; Tam-Chang, S. Langmuir 2002, 18, 3510.
(13) For discussions of dipole-dipole excitionic interactions, see: (a) Guna-
tatne, T.; Kennedy, V. O.; Kenney, M. E.; Rodgers, M. A. J. J. Phys.
Chem. A 2004, 108, 2576. (b) Engelking, J.; Wittemann, M.; Rehahn,
M.; Menzel, H. Langmuir 2000, 16, 3407.
(14) Such spectral shifts are well-known for azobenzene and other dyes in
closely packed self-assembled monolayers and LB films: (a) Nieuwkerk,
A. C.; Marcelis, A. T. M.; Sudho¨ter, E. J. R. Langmuir 1997, 13, 3325.
(b) Everaars, M. D.; Marcelis, A. T. M.; Sudho¨ter, E. J. R. Langmuir
1996, 12, 3964. (c) Shimomura, M.; Aiba, S.; Tagima, N.; Inoue, N.;
Okuyama, K. Langmuir 1995, 11, 969.
(2)
while maintaining a large EO response (ø33 ≈ 232 pm/V at 1064
nm; r33 ≈ 43 pm/V at 1550 nm).
Acknowledgment. We thank DARPA/ONR (SP01P7001R-A1/
N00014-00-C) and the NSF MRSEC program (DMR 0076077) for
support of this research. We thank Dr. S. Keinan and Prof. M.
Ratner for computational collaboration, and Dr. G. Evmenenko and
Prof. P. Dutta for X-ray reflectivity measurements.
(2)
(15) Assuming a two-level dispersion model, the relation between r33 and ø33
(neglecting dispersion of the local field factors) is given by (Sigelle, M.;
Hierle, R. J. Appl. Phys. 1981, 52, 4199):
(3ω02 - ω2)(ω02 - ω′2)(ω02 - 4ω′2)
Supporting Information Available: Experimental details regarding
chromophore synthesis, SA film fabrication, and characterizations. This
2
n4
(2)
r33
)
ø
33
3ω02(ω02 - ω2)2
where ω, ω′ are EO and SHG fundamental frequencies, respectively (i.e.,
1550 and 1064 nm, respectively), ω0 is the first resonance frequency
(corresponding to λmax), and n is the refractive index.
References
(1) For recent reviews of organic EO materials, see: (a) Dalton, L. R.;
Robinson, B. H.; Nielson, R.; Jen, A. K.; Casmier, D.; Rabiei, P.; Steier,
JA045043K
9
J. AM. CHEM. SOC. VOL. 126, NO. 49, 2004 15975