systematically investigated. On combination with 2 equiv
of n-butyllithium the protected aniline 2a underwent base-
mediated elimination of the 3-chloro substituent to afford
the aryne intermediate 4a, followed by intramolecular
cyclization. Trapping of moiety 5a with a THF solution
of acetic acid as the model electrophile provided the
benzoxazole 6a (Scheme 1).9
The optimal preparation of 6a was achieved using a
0.25 M concentration of aniline derivative 2a (1.0 equiv) in
tetrahydrofuran, a 1.25 M solution of n-butyllithium (2.4
equiv) in hexane, and a 0.75 M solution of the correspond-
ing electrophile (3.0 equiv) in tetrahydrofuran. The lithia-
tion chemistry occurred at À10 °C with a residence time of
300 s, whereas the electrophilic quench required À5 °C and
a 60 s reaction time. Maintaining a temperature as close to
À10°C aspossibleforthe lithiation chemistry wasfound to
be a critical process parameter, since any warmer tempera-
tures led to the formation of undesired byproducts10 over
a prolonged reaction time. Calorimetric investigations
showed an instantaneous reaction and the exothermic
nature (510 kJ/mol) of the base-mediated transformation;
it resulted in an adiabatic temperature rise of about 55 °C
(considering a 0.17 M solution) in the first mixing zone.11
To efficiently remove the reaction heat generated, an
appropriate mixing device had to be identified. In order
to avoid hot spots it was decided that a nonoptimal mixing
regime would serve to dissipate the reaction energy over
the length of the tubular reactor, avoiding thermal accu-
mulation in a single mixing point (adiabatic conditions).
This reasoning led us to choose a metal Swagelok T-piece
as a mixing device.12 To further facilitate and control the
heat dissipation all reagent streams were prechilled before
mixing. Adhering to the above protocol ensured a high-
quality product 6a that required only a simple extractive
workup followed by evaporation of the solvent.
Figure 1. General reactor setup.
solvent, residence time, mixing efficiency, reaction tem-
perature, reagent concentration, and stoichiometries being
(1) (a) Lokwani, P.; Nagori, B. P.; Batra, N.; Goyal, A.; Gupta, S.;
Singh, N. J. Chem. Pharm. Res. 2011, 3, 302–311. (b) Hausner, S. H.;
Alagille, D.; Koren, A. O.; Amici, L.; Staley, J. K.; Cosgrove, K. P.;
Baldwin, R. M.; Tamagnan, G. D. Bioorg. Med. Chem. Lett. 2009, 19,
543–545. (c) Smith, C. J.; Ali, A.; Chen, L.; Hammond, M. L.; Anderson;
Chen, Y.; Eveland, S. S.; Guo, Q.; Hyland, S. A.; Milot, D. P.; Sparrow,
C. P.; Wright, S. D.; Sinclair, P. J. Bioorg. Med. Chem. Lett. 2010, 20,
346–349. (d) Yang, Z.; Fairfax, D. J.; Maeng, J.-H.; Masih, L.;
Usyatinsky, A.; Hassler, C.; Isaacson, S.; Fitzpatrick, K.; DeOrazio,
R. J.; Chen, J.; Harding, J. P; Isherwood, M.; Dobritsa, S.; Christensen,
K. L.; Wierschke, J. D.; Bliss, B. I.; Peterson, L. H.; Beer, C. M.; Cioffi,
C.; Lynch, M.; Rennells, W. M.; Richards, J. J; Rust, T.; Khmelnitsky,
Y. L.; Cohen, M. L.; Manning, D. D. Bioorg. Med. Chem. Lett. 2010, 20,
6538–6541. (e) Jin, C.; Fix, S. E.; Kepler, J. A.; Cook, C. E. Bioorg. Med.
Chem. Lett. 2012, 22, 1705–1708. (f) Wang, X.; Cui, M.; Yu, P.; Li, Z.;
Yang, Y.; Jia, H.; Liu, B. Bioorg. Med. Chem. Lett. 2012, 22, 4327–4331.
(g) Sessions, E. H.; Yin, Y.; Bannister, T. D.; Weiser, A.; Griffin, E.;
Pocas, J.; Cameron, M. D.; Ruiz, C.; Lin, L.; Schurer, S. C.; Schroter, T.;
LoGrasso, P.; Feng, Y. Bioorg. Med. Chem. Lett. 2008, 18, 6390–6393.
(h) Ouyang, L.; Huang, Y.; Zhao, Y.; He, G.; Xie, Y.; Liu, J.; He, J.; Liu,
B.; Wei, Y. Bioorg. Med. Chem. Lett. 2012, 22, 3044–3049. (i) Deng, G.;
Meng, Q.; Liu, Q.; Xu, X.; Xu, Q.; Ren, F.; Guo, T. B.; Lu, H.; Xiang,
J. N.; Elliott, J. D.; Lin, X. Bioorg. Med. Chem. Lett. 2012, 22, 3973–
3977. (j) Keely, N. O. M.; Meegan, J. Curr. Trends Med. Chem. 2009, 6,
1–17. (k) Sweis, R. F.; Hunt, J. A.; Kallashi, F.; Hammond, M. L.; Chen,
Y. Bioorg. Med. Chem. Lett. 2011, 21, 1890–1895. (l) Hou, J.; Li, Z.;
Fang, Q.; Feng, C.; Zhang, H.; Guo, W.; Wang, H.; Gu, G.; Tian, Y.;
Liu, P.; Liu, R.; Lin, J.; Shi, Y. K.; Yin, Z.; Shen, J.; Wang, P. G. J. Med.
Chem. 2012, 55, 3066–3075. (m) Certal, V.; Halley, F.; Virone-Oddos,
A.; Delorme, C.; Karlsson, A.; Rak, A.; Thompson, F.; Filoche-
In order to demonstrate the substrate scope and syn-
thetic value of the continuous flow process, conditions
for the direct conversion of 2a to various benzoxazoles
€
€
zang.de/en/laboratory-devices/syringe-doser.html (accessed Oct 30,
2013).
khorst.ch/en/ (accessed Oct 30, 2013).
hitec-zang.de/en/laboratory-automation/software.html (accessed Oct
30, 2013).
(7) (a) Ono, M.; Yamakawa, K.; Kobayashi, H.; Itoh, I. Heterocycles
1988, 27, 881–884. (b) Bruyneel, F.; Enaud, E.; Billottet, L.; Vanhulle, S.;
Marchand-Brynaert, J. Eur. J. Org. Chem. 2008, 72–79. (c) Lagadic, E.;
Garcia, Y.; Marchand-Brynaert, J. Synthesis 2012, 44, 93–98.
(8) Busch-Petersen, J.; Leonard, T. B.; Palovich, M. R.; Sarau,
H. M.; Lazaar, A. L.; Widdowson, K. L. US 20100256157, 2010.
(9) (a) Reavill, D. R.; Richardson, S. K. Synth. Commun. 1990, 20,
1423–1436. (b) Clark, R. D.; Caroon, J. M. J. Org. Chem. 1982, 47,
2804–2806.
ꢀ
Romme, B.; El-Ahmad, Y.; Carry, J. C.; Abecassis, P. Y.; Lejeune, P.;
Vincent, L.; Bonnevaux, H.; Nicolas, J. P.; Bertrand, T.; Marquette,
J. P.; Michot, N.; Benard, T.; Below, P.; Vade, I.; Chatreaux, F.;
Lebourg, G.; Pilorge, F.; Angouillant-Boniface, O.; Louboutin, A.;
Lengauer, C.; Schio, L. J. Med. Chem. 2012, 55, 4788–4805. (n) Expert
Opin. Ther. Pat. 2003, 13, 717À720.
(2) (a) Thomas, B.; George, J.; Sugunan, S. Ind. Eng. Chem. Res.
2009, 48, 660–670. (b) Ren, P.; Salihu, I.; Scopelliti, R.; Hu, X. Org. Lett.
2012, 14, 1748–1751. (c) Wu, M.; Hu, X.; Liu, J.; Liao, Y.; Deng, G.-J.
ꢀ
Org. Lett. 2012, 14, 2722–2725. (d) Bastug, G.; Eviolitte, Ch.; Marko,
(10) As major byproducts the corresponding dimers (for structure see
Supporting Information, Figure 1) and the protodehalogenated benzox-
azole (when using an electrophile other than acid) have been observed
during the batch optimization process.
(11) Experiment was performed in a METTLER RC1 reaction
calorimeter. Software: WinRC NT V.7. Glass reactor 0.9 L equipped
with 4-bladed glass propeller stirrer, glass cover, and glass inserts.
I. E. Org. Lett. 2012, 14, 3502–3505. (e) Cui, W.; Kargbo, R. B.; Sajjadi-
Hashemi, Z.; Ahmed, F.; Gauuan, J. F. Synlett 2012, 23, 247–250. (f)
Yoshida, Y.; Hamada, Y.; Umezu, K.; Tabuchi, F. Org. Process Res.
Dev. 2004, 8, 958–961. (g) Bonnamour, J.; Bolm, C. Org. Lett. 2008, 10,
2665–2667. (h) Reavill, D. A.; Richardson, S. K. Synth. Commun. 1990,
20, 1423–1436. (i) Kalkhambkar, R. G.; Laali, K. K. Tetrahedron Lett.
2012, 53, 4212–4215. (j) Turker, L.; Sener, E.; Yalcin, I.; Akbulut, U.;
€
€
(12) Schwolow, S.; Hollmann, J.; Schenkel, B.; Roder, T. Org.
Process Res. Dev. 2012, 16, 1513–1522.
Kayalidere, I. Sci. Pharm. 1990, 58, 107–113. (k) Schnurch, M.;
€
Hammerle, J.; Stanetty, P. Sci. Synth. 2010, 11.13, 1–56.
Org. Lett., Vol. 15, No. 21, 2013
5547