Y. Kita et al. / Tetrahedron Letters 46 (2005) 89–91
91
Table 2.
Table 3.
O
O
O
O
R
Et
Et
R
OR'
OR'
OR'
cis-4a—e
SnCl4
(1.1 eq.)
OR'
OR'
SnCl4
(1.1 eq.)
5a—e
8
cis-7
O
and/or
O
CH2Cl2
—78 °C ~ r.t.
CH2Cl2
0 °C
O
O
OR'
OR'
OR'
and/or
R
R
Et
trans-7
Et
trans-4a—e
6a—e
9
Entry
4
R
R0
Yield (%)
Entry
Substrate
Yield (%)
5
6
8
9
1
2
3
4
5
cis-4a
cis-4b
cis-4c
cis-4d
cis-4e
Et
R0 = H
––
––
––
76
91
94
––
––
1
2
3
4
cis-7a (R0 = Bn)
13
68
80
––
––
Me
Et
R0 = Bn
R0 = Bn
R0 = TBS
R0 = TBS
trans-7a (R0 = Bn)
cis-7b (R0 = TBS)
trans-7b (R0 = TBS)
11
78a
89a
Me
Et
90a
65a
a Hydroxy ketone (8: R0 = H) was obtained.
6
trans-4a
trans-4b
trans-4c
trans-4d
trans-4e
Et
R0 = H
27
11
56
76
55
––
––
7
Me
Et
R0 = Bn
R0 = Bn
R0 = TBS
R0 = TBS
8
––
Lewis acid, SnCl4, which can be a very useful tool in
the organic synthetic field.
9
10
Me
Et
100a
47a
a Hydroxy ketone (5: R0 = H) was obtained.
References and notes
compounds, every reaction afforded the b-hydroxy
ketone possibly obtained by desilylation after the
rearrangement because the products are completely dif-
ferent from those derived from epoxy alcohols without
protecting group.
1. For reviews on the Lewis acid-mediated rearrangement of
epoxides, see: (a) Parker, R. E.; Isaacs, N. S. Chem. Rev.
1959, 59, 737; (b) Rickborn, B. In Comprehensive Organic
Synthesis, Carbon–Carbon-Bond Formation; Pattenden, G.,
Ed.; Pergamon: Oxford, 1991; Vol. 3, Chapter 3.3, p 733.
2. For examples, see: (a) Suda, K.; Kikkawa, T.; Nakajima,
S.; Takanami, T. J. Am. Chem. Soc. 2004, 126, 9554; (b)
Jeon, S.; Walsh, P. J. Am. Chem. Soc. 2003, 125, 9544; (c)
Marson, C. M.; Walker, A. J.; Pickering, J.; Hobson, A. D.
J. Org. Chem. 1993, 58, 5944; (d) Marson, C. M.; Harper,
S.; Oare, A. J. Org. Chem. 1998, 63, 3798; (e) Marson, C.
M.; Khan, A.; Porter, R. A.; Cobb, A. J. A. Tetrahedron
Lett. 2002, 43, 6637; (f) Marson, C. M.; Oare, C. A.;
McGregor, J.; Walsgrove, T.; Grinter, T. J.; Adams, H.
Tetrahedron Lett. 2003, 44, 141; (g) Maruoka, K.; Murase,
N.; Bureau, R.; Ooi, T.; Yamamoto, H. Tetrahedron 1994,
50, 3663; (h) Jung, M. E.; Lee, W. S.; Sun, D. Org. Lett.
1999, 1, 307; (i) Jung, M. E.; Heuvel, A. V. D. Tetrahedron
Lett. 2002, 43, 8169; (j) Jung, M. E.; Hoffmann, B.; Rausch,
B.; Contreras, J. M. Org. Lett. 2003, 5, 3159; (k) Zhu, Y.;
Shu, L.; Tu, Y.; Shi, Y. J. Org. Chem. 2001, 66, 1818; (l)
Ranu, B. C.; Jana, U. J. Org. Chem. 1998, 63, 8212; (m)
Bhatia, K. A.; Eash, K. J.; Leonard, N. M.; Oswald, M. C.;
Mohan, R. S. Tetrahedron Lett. 2001, 42, 8129.
The above phenomenon was also observed in the reac-
tions of the compounds with the C3–phenyl group 7.
The rearrangement reactions of 7 must proceed via the
more stable C3-carbocation than those of compounds
1 and 4. In these cases, the control of the stereochemis-
try was also achieved to give the b-hydroxy ketones 8
and the a-benzyloxy ketones 9 depending on the protect-
ing group. These results are also rationalized as shown
in Scheme 2. This result shows that the concept in
Scheme 1 has a generality for conformationally flexible
compounds (Tables 2 and 3).
In conclusion, we have found that the Lewis acid pro-
moted rearrangement reaction of the 2,2,3,3-tetrasubsti-
tuted-2,3-epoxy-1-alcohol derivatives, which are
supposed to have only a slight difference in the stability
between the C2- and C3-carbocation, proceed via the
C3-carbocation, and furthermore, the reactions using
SnCl4 as a Lewis acid can proceed in a stereoselective
manner by controlling the chelation and nonchelation
transition state only by changing the protecting group.
This method could produce two types of rearranged
products from the single carbon skeleton. Studies on
the stereocontrol of the rearrangement reactions of
epoxy alcohol derivatives are rare. Only two papers, to
the best of our knowledge, have reported this matter
using trisubstituted epoxides and rather special Lewis
acids such as high-valent metalloporphyrin complex,2a
MABR and SbF5.2g Our method here uses a common
3. There is only one example for practical level except our
´
work (Ref. 4), see: Abad, A.; Agullo, C.; Arno, M.; Cun˜at,
A. C.; Zaragoza, R. J. Synlett 1993, 895.
´
´
4. For recent examples, see: (a) Kita, Y.; Furukawa, A.;
Futamura, J.; Ueda, K.; Sawama, Y.; Hamamoto, H.;
Fujioka, H. J. Org. Chem. 2001, 66, 8779; (b) Kita, Y.;
Futamura, J.; Ohba, Y.; Sawama, Y.; Ganesh, J. K.;
Fujioka, H. J. Org. Chem. 2003, 68, 5917; (c) Fujioka, H.;
Yoshida, Y.; Kita, Y. J. Synth. Org. Chem. Jpn. 2003, 61,
133; (d) Kita, Y.; Futamura, J.; Ohba, Y.; Sawama, Y.;
Ganesh, J. K.; Fujioka, H. Tetrahedron Lett. 2003, 44,
411.
5. Benzyl ether was chosen because of its easier deprotection
than that of methyl ether.