RSC Advances
Paper
N–H/O]N and N–H/O–H, simultaneously, the Iꢀ–CS 12 N. H. Evans and P. D. Beer, Angew. Chem., Int. Ed., 2014, 53,
complex was formed via the coordination of Iꢀ with O–H, N–H
11716–11754.
and hydrogen atoms of HC]N on CS (Scheme 2). Further 13 Y. Hua and A. H. Flood, Chem. Soc. Rev., 2010, 39, 1262–1271.
evidence obtained by ESI-MS experiments also supports this 14 B. Schazmann, N. Alhashimy and D. Diamond, J. Am. Chem.
proposed mechanism. In the ESI-MS spectra of CS (Fig. S1,
Soc., 2006, 128, 8607.
ESI†), the [CS–H]ꢀ (m/z calcd ¼ 351.1250). However, when 1 15 L. L. Zhou, H. Sun, H. P. Li, H. Wang, X. H. Zhang, S. K. Wu
equivalent of Iꢀ was added to the solution of CS, coinciding well
and S. T. Lee, Org. Lett., 2004, 6, 1071.
with that for the species [CS + H2O + Iꢀ]ꢀ (m/z calcd ¼ 496.0906) 16 F. M. Pfeffer, A. M. Buschgens, N. W. Barnett,
and indicating the formation of the stabilized anions species
T. Gunnlaugssonb and P. E. Kruger, Tetrahedron Lett.,
2005, 46, 6579.
CS–Iꢀ (Fig. S2, ESI†).
In summary, we have developed a new chemosensor CS, 17 F. M. Pfeffer, T. Gunnlaugsson, P. Jensen and P. E. Kruger,
which could detect Iꢀ in aqueous solution with specic selec-
Org. Lett., 2005, 7, 5357.
tivity and high sensitivity. A unique colorimetric response to Iꢀ 18 Q. Lin, X. Liu, T. B. Wei and Y. M. Zhang, Chem.–Asian J.,
is realized through the coordination with CS. In particular,
2013, 8, 3015–3021.
competitive anions such as Fꢀ, AcOꢀ, and H2PO4 did not 19 H. D. P. Ali and G. M. Hussey, J. Org. Chem., 2005, 70, 10875.
afford any obvious interference response. The detection limits 20 D. Aldakov and P. Anzenbacher Jr, J. Am. Chem. Soc., 2004,
ꢀ
of Iꢀ were found to be 1 ꢁ 10ꢀ4 M and 1.1 ꢁ 10ꢀ6 M from the
126, 4752.
naked-eye color changes and absorption spectral changes 21 D. H. Lee, J. H. Im, S. U. Son, Y. K. Chung and J. Hong, J. Am.
respectively. So this recognition behaviour makes CS as
Chem. Soc., 2003, 125, 7752.
a potential probe to detect Iꢀ in environmental and life 22 N. Kameta and K. Hiratani, Chem. Commun., 2005, 41, 725.
sciences.
23 L. Fabbrizzi, F. Foti and A. Taglietti, Org. Lett., 2005, 13, 2603.
24 Y. Bai, B. G. Zhang, J. Xu, C. Y. Duan, D. B. Dang, D. J. Liu
and Q. J. Meng, New J. Chem., 2005, 29, 777.
Acknowledgements
25 G. Dai, O. Levy and N. Carrasco, Nature, 1996, 379, 458–460.
This work was supported by the National Natural Science 26 F. Jalali, M. J. Rajabi, G. Bahrami and M. Shamsipur, Anal.
Foundation of China (No. 21064006, 21262032 and 21161018),
Sci., 2005, 21, 1533–1535.
the Program for Changjiang Scholars and Innovative Research 27 (a) C. M. Rhee, I. Bhan, E. K. Alexander and S. M. Brunelli,
Team in University of Ministry of Education of China (No.
IRT1177), the Natural Science Foundation of Gansu Province
(No. 1010RJZA018), the Youth Foundation of Gansu Province
(No. 2011GS04735) and NWNU-LKQN-11-32.
Arch. Intern. Med., 2012, 17, 153–159; (b) N. Kh. Petrov,
D. A. Ivanov, D. V. Golubkov, S. P. Gromov and
M. V. Almov, Chem. Phys. Lett., 2009, 480, 96–99.
28 F. P. Hao, P. R. Haddad and T. Ruther, Chromatographia,
2008, 67, 495–498.
29 T. K. Malongo, S. Patris, P. Macours, F. Cotton, J. Nsangu
and J. Kauffmann, Talanta, 2008, 76, 540–547.
Notes and references
1 R. M. Duke, E. B. Veale, F. M. Pfeffer, P. E. Kruger and 30 E. M Zahran, Y. Hua, S. Lee, A. H. Flood and L. G. Bachas,
T. Gunnlaugsson, Chem. Soc. Rev., 2010, 39, 3936–3953.
Anal. Chem., 2011, 83, 3455–3461.
2 X. G. Li, D. Zhang and J. Li, Spectrochim. Acta, Part A, 2014, 31 M. H. Chiu, W. L. Cheng, G. Muthuraman, C. T. Hsu,
127, 1–9.
H. H. Chung and J. M. Zen, Biosens. Bioelectron., 2009, 24,
3008–3013.
3 S. S. Khan and M. Riaz, Talanta, 2014, 122, 209–213.
4 K. S. Bejoymohandas, A. Kumar, S. Sreenadh, E. Varathan, 32 X. Qin, H. C. Wang, Z. Y. Miao, X. S. Wang, Y. X. Fang,
S. Varughese, V. Subramanian and M. L. P. Reddy, Inorg.
Chem., 2016, 55, 3448–3461.
5 B. B. Hu, P. Lu and Y. G. Wang, Sens. Actuators, B, 2014, 195,
320–323.
Q. Chen and X. G. Shao, Talanta, 2011, 84, 673–678.
33 X. J. Zhu, S. T. Fu, W. K. Wong, J. P. Guo and W. Y. Wong,
Angew. Chem., Int. Ed., 2006, 45, 3150–3154.
´
34 A. Caballero, R. Martınez, V. Lloveras, I. Ratera,
6 L. Wang, W. Li, J. Lu, J. P. Zhang and H. Wang, Tetrahedron,
2014, 70, 3172–3177.
J. V. Gancedo, K. Wurst, A. Tarraga, P. Molina and
J. Veciana, J. Am. Chem. Soc., 2005, 127, 15666–15667.
7 V. Suryanti, M. Bhadbhade, H. M. Chawla, E. Howe, 35 G. Hennrich, H. Sonnenschein and G. U. Resch, J. Am. Chem.
P. Thordarson, D. S. C. Black and N. Kumar, Spectrochim.
Acta, Part A, 2014, 121, 662–669.
8 Q. Lin, T. T. Lu, X. Zhu, B. Sun, Q. P. Yang, T. B. Wei and
Y. M. Zhang, Chem. Commun., 2015, 51, 1635–1638.
9 Q. Lin, B. Sun, Q. P. Yang, Y. P. Fu, X. Zhu, T. B. Wei and
Y. M. Zhang, Chem.–Eur. J., 2014, 20, 1–7.
Soc., 1999, 121, 5073–5074.
36 E. M. Nolan and S. J. Lippard, J. Am. Chem. Soc., 2003, 125,
14270–14271.
37 S. Ou, Z. Lin, C. Duan, H. Zhang and Z. Bai, Chem. Commun.,
2006, 42, 4392–4394.
38 J. Wang and X. Qian, Org. Lett., 2006, 8, 3721–3724.
10 E. J. Jun, K. M. Swamy, H. Bang, S. J. Kim and J. Yoon, 39 A. Ono and H. Togashi, Angew. Chem., Int. Ed., 2004, 43,
Tetrahedron Lett., 2006, 47, 3103. 4300–4302.
11 X. D. Lou, D. X. Ou, Q. Q. Li and Z. Li, Chem. Commun., 2012, 40 Y. M. Zhang, Q. Lin, T. B. Wei, X. P. Qin and Y. Li, Chem.
48, 8462–8477.
Commun., 2009, 45, 6074–6076.
86630 | RSC Adv., 2016, 6, 86627–86631
This journal is © The Royal Society of Chemistry 2016