ORGANIC
LETTERS
1H NMR Spectral Evidence for a Specific
Host Guest Complexation Induced
2005
Vol. 7, No. 15
3135-3138
−
Charge Localization in Squaraine Dyes
Ayyappanpillai Ajayaghosh* and Easwaran Arunkumar
Photosciences and Photonics Unit, Chemical Sciences DiVision, Regional Research
Laboratory (CSIR), TriVandrum-695019, India
Received March 21, 2005
ABSTRACT
Experimental support is provided for the charge localization in squaraines, a class of fundamentally and technologically important organic
+
dyes, by 1H NMR analysis through a host
−
guest complexation approach. Specific binding of Ca2 ions to the squaraine 2 with a podand
sidearm resulted in a charge-localized structure 2a with dramatic shifts and resolution of the proton signals when compared to those of 2.
Squaraine dyes are important from both fundamental and
technological viewpoints. They are extensively used in
imaging process,1 photovoltaics,2 nonlinear optics,3 sensor
design,4 photoconducting devices,5 photodynamic therapy,6
and the design of conjugated polymers.7 They show sharp
and intense absorption bands from visible to the near-IR
wavelengths, depending upon the structure, due to a donor-
acceptor-donor type of charge transfer and also due to the
extensive conjugation.8 Theoretical studies have proved that
squaraine dyes show significant bond delocalization.9 From
crystallographic studies Dirk et al. have reported that the
average C-C bond length in squaraines lies between single
and double bonds, suggesting that there is an extensive
delocalization of the electronic charge along the molecule,
resulting in resonance structures as shown in Scheme 1.10
Kazmaier et al. have demonstrated that a dipolar cyanine
structure and not a cyclobutene diylium structure best
(1) Law, K.-Y. Chem. ReV. 1993, 93, 449.
(2) Loutfy, R. O.; Hsiao, C. K.; Kazmaier, P. M. J. Photogr. Sci. 1983,
27, 5.
(3) (a) Chen, C.-T.; Marder, S. R.; Cheng, L.-T. J. Chem. Soc., Chem.
Commun. 1994, 259. (b) Andrews, J. H.; Khagdarov, J. D. V.; Skinger, K.
D.; Hull, D. L.; Chuang, K. C. Nonlinear Opt. 1995, 10, 227. (c) Ashwell,
G. J.; Jefferies, G.; Hamilton, D. G.; Lynch, D. E.; Roberts, M. P. S.; Bahra,
G. S.; Brown, C. R. Nature 1995, 375, 385.
(4) (a) Das, S.; Thomas, K. G.; Thomas, K. J.; Kamat, P. V.; George,
M. V. J. Phys. Chem. 1994, 98, 9291. (b) Thomas, K. G.; Thomas, K. J.;
Das, S.; George, M. V. Chem. Commun. 1997, 597. (c) Oguz, U.; Akkaya,
E. U. Tetrahedron Lett. 1998, 39, 5857. (d) Chenthamarakshan, C. R.;
Ajayaghosh, A. Tetrahedron Lett. 1998, 39, 1795. (e) Chenthamarakshan,
C. R.; Eldo, J.; Ajayaghosh, A. Macromolecules 1999, 32, 5846.
(5) (a) Tam, A. C. Appl. Phys. Lett. 1980, 37, 978. (b) Emmelius, M.;
Pawlowski, G.; Vollmann, H. W. Angew. Chem., Int. Ed. Engl. 1989, 28,
1445.
(7) (a) Ajayaghosh, A.; Eldo, J. Org. Lett. 2001, 3, 2595. (b) Eldo, J.;
Ajayaghosh, A. Chem. Mater. 2002, 14, 410. (c) Bu¨schel, M.; Ajayaghosh,
A.; Arunkumar, E.; Daub, J. Org. Lett. 2003, 5, 2975. (d) Ajayaghosh, A.
Chem. Soc. ReV. 2003, 32, 181.
(8) Law, K.-Y. J. Phys. Chem. 1987, 91, 5184.
(9) Bigelow, R. W.; Freund, H.-J. Chem. Phys. 1986, 107, 159.
(10) Dirk, C. W.; Herndon, W. C.; Cervantes-Lee, F.; Selnau, H.;
Martinez, S.; Kalamegham, P.; Tan. A.; Campos, G.; Velez, M.; Zyss, J.;
Ledoux, I.; Cheng, L.-T. J. Am. Chem. Soc. 1995, 117, 2214.
(6) (a) Ramaiah, D.; Eckert, I.; Arun, K. T.; Weidenfeller, L.; Epe, B.
Photochem. Photobiol. 2002, 76, 672. (b) Ramaiah, D.; Eckert, I.; Arun,
K. T.; Weidenfeller, L.; Epe, B. Photochem. Photobiol. 2004, 79, 99.
10.1021/ol050612u CCC: $30.25
© 2005 American Chemical Society
Published on Web 06/28/2005