3852
M. G. M. Purwanto, K. Weisz / Tetrahedron Letters 47 (2006) 3849–3852
10. Swalley, S. E.; Baird, E. E.; Dervan, P. B. J. Am. Chem.
Soc. 1996, 118, 8198–8206.
11. Moser, H.; Dervan, P. B. Science 1987, 238, 645–650.
However, the results also highlight the importance of
additional contributions to binding not effective in the
aprotic environment, which result in unexpectedly low
affinities within a DNA triple helix. Clearly, further
optimization with respect to more favorable base–base
stacking and hydrophobic interactions while preserving
the major structural features and geometry of the base
analog are needed for a more efficient CG base pair
recognition associated with stronger binding to a corre-
sponding duplex target in aqueous solution.
´ `
12. Thuong, N. T.; Helene, C. Angew. Chem., Int. Ed. Engl.
1993, 32, 666–690.
13. (a) Guianvarc’h, D.; Fourrey, J. L.; Maurisse, R.; Sun, H.
S.; Benhida, R. Bioorg. Med. Chem. 2003, 11, 2751–2759;
(b) Rusling, D. A.; Powers, V. E. C.; Ranasinghe, R. T.;
Wang, Y.; Osborne, S. D.; Brown, T.; Fox, K. R. Nucleic
Acids Res. 2005, 33, 3025–3032; for reviews, see: (c)
Gowers, D. M.; Fox, K. R. Nucleic Acids Res. 1999, 27,
1569–1577; (d) Doronina, S. O.; Behr, J.-P. Chem. Soc.
Rev. 1997, 63–71; (e) Purwanto, M. G. M.; Weisz, K. Curr.
Org. Chem. 2003, 7, 427–446.
References and notes
14. Purwanto, M. G. M.; Lengeler, D.; Weisz, K. Tetrahedron
Lett. 2002, 43, 61–64.
´ `
1. Duval-Valentin, G.; Thuong, N. T.; Helene, C. Proc. Natl.
15. Purwanto, M. G. M.; Weisz, K. J. Org. Chem. 2004, 69,
195–197.
Acad. Sci. U.S.A. 1992, 89, 504–508.
2. Kim, H.-G.; Miller, D. M. Biochemistry 1998, 37, 2666–
2672.
3. Havre, P. A.; Gunther, E. J.; Gasparro, F. P.; Glazer, P.
M. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 7879–7883.
4. Jones, W. R.; Stone, M. P. Nucleic Acids Res. 1998, 26,
1070–1075.
5. Dervan, P. B. Nature 1992, 359, 87–88.
6. Strobel, S. A.; Doucette-Stamm, L. A.; Riba, L.; Hous-
man, D. E.; Dervan, P. B. Science 1991, 254, 1639–1642.
7. Cherny, D. Y.; Belotserkovskii, B. P.; Frank-Kamenetskii,
M. D.; Egholm, M.; Buchardt, O.; Berg, R. H.; Nielsen, P.
E. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 1667–1670.
8. Nielsen, P. E.; Christensen, L. J. Am. Chem. Soc. 1996,
118, 2287–2288.
16. Griffin, L. C.; Kiessling, L. L.; Beal, P. A.; Gillespie, P.;
Dervan, P. B. J. Am. Chem. Soc. 1992, 114, 7976–7982.
17. (a) Hoffer, M. Chem. Ber. 1960, 93, 2777–2781; (b)
Rolland, V.; Kotera, M.; Lhomme, J. Synth. Commun.
1997, 27, 3505–3511.
18. Spectroscopic data of 4: 1H NMR (600 MHz, 293 K,
CD2Cl2): d (ppm) = 0.91 (t, 3H; CH3), 1.53 (m, 2H; CH2),
2.40–2.56 (m, 2H; H20, H200), 3.15 (m, 2H; N–CH2), 3.46–
3.50 (m, 2H; H50, H500), 3.70 (s, 6H; O–CH3), 4.10 (m, 1H;
H40), 4.47 (m, 1H; H30), 5.94 (dd, 1H; H10), 6.43 (d, 1H;
C@C–H), 7.16–7.90 (m, 16H; ArH, C@C–H, Im–H).
19. Griffin, L. C.; Dervan, P. B. Science 1989, 245, 967–971.
20. Guzzo-Pernell, N.; Lawlor, J. M.; Tregar, G. W.; Haral-
ambidis, J. Aust. J. Chem. 1998, 51, 965–972.
9. Pelton, J. G.; Wemmer, D. E. Proc. Natl. Acad. Sci.
U.S.A. 1989, 86, 5723–5727.
21. Mertz, E.; Mattei, S.; Zimmerman, S. C. Bioorg. Med.
Chem. 2004, 12, 1517–1526.