10.1002/cplu.202000354
ChemPlusChem
FULL PAPER
Infrared Spectrophotometer. All experiments were carried out using
spectroscopic grade solvents at room temperature (25± 1 oC) unless
otherwise mentioned.
[4]
[5]
a) C.-Z. Li, H.-L. Yip, A. K. Y. Jen, J. Mater. Chem. 2012, 22, 4161-
4177; b) A. Sánchez-Díaz, M. Izquierdo, S. Filippone, N. Martin, E.
Palomares, Adv. Funct. Mater. 2010, 20, 2695-2700; c) F. Giacalone, N.
Martín, Adv. Mater. 2010, 22, 4220-4248; d) J. L. Delgado, P.-A. Bouit,
S. Filippone, M. Á. Herranz, N. Martín, Chem. Commun. 2010, 46,
4853-4865.
The UV/Vis absorption spectra were recorded on a Shimadzu UV-2600
Spectrophotometer. Fluorescence spectra were collected using a SPEX-
Fluorolog F112X Spectrofluorimeter equipped with a 450 W Xenon arc
lamp. Thermogravimetric analyses were carried using TG/DTA-6200
instrument (SII Nano Technology Inc.) by heating the sample from room
temperature to 700 oC at a heating rate of 10 oC min-1 under nitrogen
atmosphere. Curing temperature was measured using differential
scanning calorimeter (Perkin-Elmer Pyris 6 DSC instrument) in sealed
aluminium pans by heating the sample from 20 oC to 250 oC at a rate of
10 oC min-1. The square wave voltammetry was done on CV, BASI CV-
50W instrument using thin film coated glassy carbon as working
a) H.-L. Yip, A. K. Y. Jen, Energ. Environ. Sci. 2012, 5, 5994-6011; b)
Y.-J. Cheng, F.-Y. Cao, W.-C. Lin, C.-H. Chen, C.-H. Hsieh, Chem.
Mater. 2011, 23, 1512-1518.
[6]
[7]
[8]
[9]
P. Heremans, D. Cheyns, B. P. Rand, Acc. Chem. Res. 2009, 42,
1740-1747.
Y. He, H.-Y. Y. Chen, J. Hou, Y. Li, J. Am. Chem. Soc. 2010, 132,
1377-1382.
Y.-J. Cheng, M.-H. Liao, C.-Y. Chang, W.-S. Kao, C.-E. Wu, C.-S. Hsu,
Chem. Mater. 2011, 23, 4056-4062.
E. Voroshazi, K. Vasseur, T. Aernouts, P. Heremans, A. Baumann, C.
Deibel, X. Xue, A. J. Herring, A. J. Athans, T. A. Lada, H. Richter, B. P.
Rand, J. Mater. Chem. 2011, 21, 17345-17352.
electrode at room temperature in the presence of 0.1
M
tetrabutylammonium hexafluorophosphate (TBAPF6) as supporting
electrolyte, Ag/AgCl electrode as reference electrode and platinum wire
as counter electrode in acetonitrile under argon atmosphere with a scan
rate of 50 mV/s. A BRUKER MULTIMODE AFM operating with a tapping
mode regime was used to record AFM images under ambient conditions.
Micro-fabricated TiN cantilever tips (NSG10) with a resonance frequency
of 299 kHz and a spring constant of 20–80 Nm-1 were used. AFM section
analysis was done offline. Samples for the imaging and roughness
measurements were prepared as explained in device fabrication section
under ambient conditions. The thickness of various films was measured
using Bruker Stylus Profilometer (Dektak XT). The current density-
[10] J. U. Lee, J. W. Jung, J. W. Jo, W. H. Jo, J. Mater. Chem. 2012, 22,
24265-24283.
[11] a) G. Wantz, Derue, L., Dautel, O., Rivaton, A., Hudhommed, P., and
Dagron-Lartigau, C., Polym. Int. 2014, 63, 1346-1361; b) Y. Xiaoniu, L.
Joachim, Macromolecules 2007, 40, 1353-1362; c) L. Ye, S. Zhang, W.
Ma, B. Fan, X. Guo, Y. Huang, H. Ade, J. Hou, Adv. Mater. 2012, 24,
6335-6341.
[12] a) M. H. Liao, C. E. Tsai, Y. Y. Lai, F. Y. Cao, J. S. Wu, C. L. Wang, C.
S. Hsu, I. Liau, Y. J. Cheng, Adv. Funct. Mater. 2014, 24, 1418-1429; b)
C. Shan, D. Xiaoyan, Y. Gang, C. Jiamin, S. Hao, X. Zuo, D. Liming, J.
Mater. Chem. A 2013, 1.
voltage (J–V) characteristics were measured with
a Keithley 2400
source-meter under AM 1.5G (100 mWcm-2) solar simulator. The shunt
and series resistance of the devices was calculated through slope of J-V
curve at Jsc and Voc respectively.
[13] D. Martin, H. Harald, W. Christoph, N. Helmut, S. S. Niyazi, S.
Wolfgang, S. Friedrich, T. Christoph, C. S. Markus, Z. Zhengguo, G.
Russell, J. Mater. Chem. 2005, 15, 5158-5163.
[14] J. K. Bumjoon, M. Yoshikazu, M. Biwu, M. J. F. Jean, Adv. Funct. Mater.
2009, 19.
Acknowledgements
[15] N. Chang-Yong, Q. Yang, S. P. Young, H. Htay, L. Xinhui, M. O.
Benjamin, T. B. Charles, B. G. Robert, Macromolecules 2012, 45,
2338-2347.
The financial support from Council of Scientific and Industrial
Research (TAPSUN, NWP-54) and Department of Science and
Technology, Government of India (Ramanujan Fellowship Grant
RJN-19/2012; GAP 1366) are gratefully acknowledged. S.K.V.
and R.R. acknowledges University Grant Commission (UGC,
Government of India) and CSIR respectively, for Research
Fellowship.
[16] C. Yen-Ju, C. Fong-Yi, L. Wei-Cheng, C. Chiu-Hsiang, H. Chao-Hsiang,
Chem. Mater. 2011, 23, 1512-1518.
[17] a) C. Namchul, Y. Hin-Lap, K. H. Steven, C. Kung-Shih, K. Tae-Wook,
A. D. Joshua, F. Z. David, K. Y. J. Alex, J. Mater. Chem. 2011, 21,
6956-6961; b) Y. J. Cheng, C. H. Hsieh, Y. He, C. S. Hsu, Y. Li, J. Am.
Chem. Soc. 2010, 132, 17381-17383; c) Y. Wang, H. Benten, S. Ohara,
D. Kawamura, H. Ohkita, S. Ito, ACS Appl. Mater. Interfaces 2014, 6,
14108-14115.
[18] G. Francesco, M. Nazario, Chem. Rev. 2006, 106, 5136-5190.
[19] a) B. Iskin, G. Yilmaz, Y. Yagci, Chem. Eur. J. 2012, 18, 10254-10257;
b) M. Shoji, Z. Yue, H. Kazuhito, T. Keisuke, Macromolecules 2012, 45,
6424-6437.
Keywords: cross-linking • electron transport • fullerenes •
photovoltaics• solar cells
[1]
[2]
a) G. Li, Zhu, R., and Yang, Y., Nat. Photonics 2012, 6, 153-161; b) B.
Kippelen, J.-L. Brédas, Energ. Environ. Sci. 2009, 2, 251-261; c) J.
Peet, A. J. Heeger, G. C. Bazan, Acc. Chem. Res. 2009, 42, 1700-1708.
a) M. A. Brady, G. M. Su, M. L. Chabinyc, Soft Matter 2011, 7, 11065-
11077; b) A. Pron, P. Gawrys, M. Zagorska, D. Djurado, R. Demadrille,
Chem. Soc. Rev. 2010, 39, 2577-2632; c) T. M. Clarke, J. R. Durrant,
Chem. Rev. 2010, 110, 6736-6767; d) T. Maeda, T. Tsukamoto, A.
Seto, S. Yagi, H. Nakazumi, Macromol. Chem. Phys. 2012, 213, 2590-
2597.
[20] H. Dan, D. Xiaoyan, Z. Wei, X. Zuo, D. Liming, J. Mater. Chem. A 2013,
1, 4589-4594
[21] a) C.-H. H. Hsieh, Y.-J. J. Cheng, P.-J. J. Li, C.-H. H. Chen, M. Dubosc,
R.-M. M. Liang, C.-S. S. Hsu, J. Am. Chem. Soc. 2010, 132, 4887-
4893; b) Y.-J. J. Cheng, C.-H. H. Hsieh, Y. He, C.-S. S. Hsu, Y. Li, J.
Am. Chem. Soc. 2010, 132, 17381-17383.
[22] C.-Y. Y. Chang, C.-E. E. Wu, S.-Y. Y. Chen, C. Cui, Y.-J. J. Cheng, C.-
S. S. Hsu, Y.-L. L. Wang, Y. Li, Angew. Chem. Int. Ed. 2011, 50, 9386-
9390.
[3]
a) M. T. Dang, L. Hirsch, G. Wantz, J. D. Wuest, Chem. Rev. 2013, 113,
3734-3765; b) Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009,
109, 5868-5923; c) A. W. Hains, Z. Liang, M. A. Woodhouse, B. A.
Gregg, Chem. Rev. 2010, 110, 6689-6735; d) J. You, C.-C. Chen, Z.
Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, Y. Yang, Adv.
Mater. 2013, 25, 3973-3978.
[23] N. Cho, C.-Z. Li, H.-L. Yip, A. K. Y. Jen, Energ. Environ. Sci. 2014, 7,
638-643.
[24] a) K. Wojciechowski, I. Ramirez, T. Gorisse, O. Dautel, R. Dasari, N.
Sakai, J. M. Hardigree, S. Song, S. Marder, M. Riede, G. Wantz, H. J.
Snaith, ACS Energy Lett. 2016, 1, 648-653; b) Y. Bai, Q. Dong, Y. Shao,
Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, J. Huang, Nat. Commun.
2016, 7, 12806; c) M. Li, Z.-K. Wang, T. Kang, Y. Yang, X. Gao, C.-S.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.