C O M M U N I C A T I O N S
Scheme 1. Reactivity Studies of Titanium Alkylidene Complexes along with the Reaction Coordinate for the 1f2 Conversion in Benzene (ꢀ
) 2.284) (relative energies in kcal/mol are given in parentheses)
Supporting Information Available: Experimental preparation
(compounds 1-9), kinetic (conversion of 1 to 2), crystallographic data
(compound 1, 2, (PNP)Ti(CH2Si(CH3)3)2, and 6), computational details,
all calculated structures, and additional discussions. This material is
observed with isotopomer 2-d6, complex 3-d6 also experiences
exchange with excess C6H6 to afford proteo 3 (Scheme 1). By
analogy to the 1f2 conversion, we propose that the intermediate
(PNP)TidCHtBu(CH2SiMe3) (4) undergoes R-H migration to
t
generate (PNP)TidCHSiMe3(CH2 Bu) (5), which then participates
in C-H/C-D activation of solvent via the putative alkylidyne
intermediate (PNP)TitCSiMe3 (B) (Scheme 1).9 If the reaction is
References
1
conducted in C6D12, the H, 13C, and 31P NMR spectra indicate
(1) Crabtree, R H. Chem. ReV. 1995, 95, 987-1007 and references therein.
that both complexes 4 and 5 are present at 25 °C,9 and when the
(2) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507-514 and references
t
therein.
mixture of 4/5 is thermolyzed in C6D6, only 3-d6 and CH3 Bu are
(3) (a) Cummins, C. C.; Baxter, S. M.; Wolczanski, P. T. J. Am. Chem. Soc.
1988, 110, 8731-8733. (b) Cummins, C. C.; Schaller, C. P.; Van Duyne,
G. D.; Wolczanski, P. T.; Chan, A. W. E.; Hoffmann, R. J. Am. Chem.
Soc. 1991, 113, 2985-2994. (c) Bennett, J. L.; Wolczanski, P. T. J. Am.
Chem. Soc. 1994, 116, 2179-2180. (d) Schaller, C. P.; Cummins, C. C.
Wolczanski, P. T. J. Am. Chem. Soc. 1996, 118, 591-611. (e) Schaefer,
D. F., II; Wolczanski, P. T. J. Am. Chem. Soc. 1998, 120, 4881-4882.
(f) Bennett, J. L.; Wolczanski, P. T. J. Am. Chem. Soc. 1997, 119, 10696-
10719. (g) Slaughter, L. M.; Wolczanski, P. T.; Klinckman, T. R.; Cundari,
T. R. J. Am. Chem. Soc. 2000, 122, 7953-7975.
(4) (a) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc.
1988, 110, 8729-8731. (b) Lee, S. Y.; Bergman, R. G. J. Am. Chem.
Soc. 1995, 117, 5877-5878. (c) Hoyt, H. M.; Michael, F. E.; Bergman,
R. G. J. Am. Chem. Soc. 2004, 126, 1018-1019.
formed. An independent synthesis of the 4/5 mixture can be
generated from the transmetalation of (PNP)TidCHSiMe3(OTf) (6)9
and LiCH2 Bu, suggesting that 5 is likely the preferred isomer in
t
the 4T5 equilibrium, and that R-H migration in hypothetical 4 must
precede both R-hydrogen abstraction and C-H activation of
benzene. If complex (PNP)TidCHSiMe3(CH2SiMe3) (7) is prepared
from 6 and LiCH2SiMe3, thermolysis in C6D6 (88 °C, 12 h) also
leads to quantitative C-H bond activation concurrent with forma-
tion of 3-d6 and SiMe4 (Scheme 1). Independent synthesis of 3 can
be accomplished with -Ph and 6 (Scheme 1).9 Most impressively,
complex 1 transforms cleanly to 7 in neat SiMe4 (35 °C, 48 h),
further indicating that R-hydrogen abstraction, R-hydrogen migra-
tion, and 1,2-addition processes all play roles in these reaction
profiles.
(5) (a) Coles, M. P.; Gibson, V. C.; Clegg, W.; Elsegood, M. R. J.; Porelli,
P. A. Chem. Commun. 1996, 1963-1964. (b) van der Heijden, H.; Hessen,
B. Chem. Commun. 1995, 145-146. (c) Royo, P.; Sanchez-Nieves, J. J.
Organomet. Chem. 2000, 597, 61-68.
(6) Cheon, J.; Roger, D. M.; Girolami, G. S. J. Am. Chem. Soc. 1997, 119,
6804-6813.
(7) (a) Wada, K.; Pamplin, C. B.; Legzdins, P. J. Am. Chem. Soc. 2002, 124,
9680-9681. (b) Wada, K.; Pamplin, C. B.; Legzdins, P.; Patrick, B. O.;
Tsyba, I.; Bau, R. J. Am. Chem. Soc. 2003, 125, 7035-7048. (c) Adams,
C. S.; Legzdins, P.; Tran, E. J. Am. Chem. Soc. 2001, 123, 612-624. (d)
Tran, E.; Legzdins, P. J. J. Am. Chem. Soc. 1997, 119, 5071-5072. (e)
Blackmore, I. J.; Legzdins, P. Organometallics 2005, 24, 4088-4098.
In summary, we combined extensive experimental and theoretical
studies to examine the C-H activation mechanism involving the
titanium alkylidene complex 1. We found strong evidence for the
existence of a thus far elusive terminal titanium alkylidyne
intermediate, which has been shown to promote a number of diverse
C-H activation reactions. Some of the transformations highlighted
in this work are shown to be reversible, placing the key reaction
steps in thermodynamic equilibrium scenarios that should allow
for the rational design of systems capable of carrying important
catalytic reactions.
(8) Bailey, B. C.; Huffman, J. C.; Mindiola, D. J.; Weng, W.; Ozerov, O. V.
Organometallics 2005, 24, 1390-1393.
(9) See Supporting Information.
(10) Weng, W.; Yang, L.; Foxman, B. M.; Ozerov, O. V. Organometallics
2004, 23, 4700-4705.
(11) Schrock, R. R. Chem. ReV. 2002, 102, 145-179.
(12) The molecular structure of 1 lies with the Ti and N atoms on the 2-fold
axis at 1/4, y, 3/4. The -CHtBu and -CH2 Bu groups are disordered about
t
this axis, but are well resolved with none of the atomic positions
overlapping.
Acknowledgment. This paper is dedicated to Prof. R. R.
Schrock on the occasion of his winning the 2005 Nobel Prize in
Chemistry. We thank Indiana UniversitysBloomington, the Dreyfus
Foundation, the Alfred P. Sloan Foundation, the NSF (CHE-
0348941, PECASE Award, 0116050), and NIH (HG003894) for
financial support. B.C.B. acknowledges the Department of Educa-
tion for a GAANN Fellowship.
(13) Falguni, B.; Bailey, B. C.; Huffman, J. C.; Mindiola, D. J. Organometallics
2005, 24, 3321-3334.
(14) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Lee, C. T.;
Yang, W. T.; Parr, R. G. Phys. ReV. B 1988, 37, 785-789. (c) Dunning,
T. H. J. Chem. Phys. 1989, 90, 1007-1023.
(15) Jaguar 5.5; Schro¨dinger, L.L.C.: Portland, OR, 1991-2003.
JA0556934
9
J. AM. CHEM. SOC. VOL. 127, NO. 46, 2005 16017