Page 9 of 11
Pl Ne ae swe Jdoo u nr no at l ao df j Cu sh te mm ai sr tgr iyn s
DOI: 10.1039/C8NJ03328E
Journal Name
ARTICLE
them was formed. On the other hand, besides affording 20 B. Ballarin, D. Barreca, E. Boanini, M. C. Cassani, P.
Dambruoso, A. Massi, A. Mignani, D. Nanni, C. Parise and A.
superior conversion and selectivity to desired products, the
Zaghi, ACS Sustainable Chem. Eng., 2017, 5, 4746−4756.
1 Q. Wang, X. Cai, Y. Liu, J. Xie, Y. Zhou and J. Wang, Appl.
Catal., B, 2016, 189, 242–251.
proposed catalytic system features a wide substrate scope for
both aryl and alkyl alcohols. The catalyst can be easily
2
regenerated and no obvious loss in catalytic activity was found 22 C. Parmeggiani and F. Cardona, Green Chem., 2012, 14
,
547
−564.
after seven cycles. Consequently, the present catalytic reaction
system might offer a sustainable and cost-effective process for
the selective oxidation of various alcohols to corresponding
2
2
3 V. D. Makwana, Y. C. Son, A. R. Howell and S. L. Suib, J.
Catal., 2002, 210, 46–52.
4 B. Sarmah, R. Srivastava, P. Manjunathan and G. V.
carbonyl compounds over
composite catalyst.
a
3 3 4
well-defined WO /g-C N
Shanbhag, ACS Sustainable Chem. Eng., 2015,
25 S. Xiao, C. Zhang, R. Chen and F. Chen, New J. Chem., 2015,
, 4924–4932.
6 C. Bai, A. Li, X. Yao, H. Liu and Y. Li, Green Chem., 2016, 18
061–1069.
3, 2933–2943.
3
9
2
2
,
1
Conflicts of interest
7 M. J. Muñoz-Batista, A. Kubacka, R. Rachwalik, B. Bachiller-
Baeza and M. Fernández-García, J. Catal., 2014, 309, 428–
There are no conflicts to declare.
4
38.
2
2
3
3
3
3
3
3
3
3
3
3
8 R. Abe, H. Takami, N. Murakami and B. Ohtani, J. Am. Chem.
Soc., 2008, 130, 7780–7781.
9 Y. Peng, W. Si, X. Li, J. Chen, J. Li, J. Crittenden and J. Hao,
Environ. Sci. Technol., 2016, 50, 9576–9582.
0 J. Ding, Q. Liu, Z. Zhang, X. Liu, J. Zhao, S. Cheng, B. Zong and
W. Dai, Appl. Catal., B, 2015, 165, 511–518.
1 F. He, G. Chen, Y. Yu, S. Hao, Y. Zhou and Y. Zheng, ACS Appl.
Acknowledgements
This work was supported by Zhejiang Provincial Key Laboratory
of Advanced Chemical Engineering Manufacture Technology
(No. 2017E10001), Zhejiang Province (China).
Mater. Interfaces, 2014, 6
, 7171−7179.
2 W. J. Ong, L. L. Tan, S. P. Chai, S. T. Yong and A. R. Mohamed,
Nano Energy, 2015, 13, 757−770.
3 M. J. Muñoz-Batista, A. Kubacka and M. Fernández-García,
References
1
J. Wang, L. Tang, G. Zeng, Y. Liu, Y. Zhou, Y. Deng, J. Wang
and B. Peng, ACS Sustainable Chem. Eng., 2017,
062−1072.
P. Zhang, Y. Gong, H. Li, Z. Chen and Y. Wang, Nat. Commun.,
013, , 1593.
M. Joe Ndolomingo and R. Meijboom, Appl. Surf. Sci., 2017,
98, 19–32.
J. M. Hoover, B. L. Ryland and S. S. Stahl, J. Am. Chem. Soc.,
013, 135, 2357–2367.
Catal. Sci. Technol., 2014,
4 J.Li, H. Hao , J. Zhou and Z. Zhu, New J. Chem., 2016, 40
638−9647.
5 J. Fu, J. Yu, C. Jiang and B. Cheng, Adv. Energy Mater., 2018,
, 1701503.
4
, 2006−2015.
5
,
,
1
9
2
3
4
5
6
7
8
9
1
1
2
4
8
6 K. Katsumata, R. Motoyoshi, N. Matsushita and K. Okada, J.
Hazard. Mater., 2013, 260, 475–482.
7 W. Yu, J. Chen, T. Shang, L. Chen, L. Gu and T. Peng, Appl.
Catal., B, 2017, 219, 693–704.
8 T. Xiao, Z. Tang, Y. Yang, L. Tang, Y. Zhou and Z. Zou, Appl.
Catal., B, 2018, 220, 417–428.
9 X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.
3
2
S. E. Dapurkar, H. Kawanami, T. M. Suzuki, T. Yokoyama and
Y. Ikushima, Chemistry Letters, 2008, 37, 150–151.
C. Aellig, C. Girard and I. Hermans, Angew. Chem., Int. Ed.,
2
011, 50, 12355–12360.
M. Ghobadifard and S. Mohebbi, New J. Chem., 2018, 42
530–9542.
R. Nie, J. Shi, W. Du, W. Ning, Z. Hou and F. Xiao, J. Mater.
Chem. A, 2013, , 9037–9045.
Carlsson, K. Domen and M. Antonietti, Nat. Mater., 2009,
6–80.
0 R. Zhao, X. Li, J. Su and X. Gao, Appl. Surf. Sci., 2017, 392
10–816.
8
,
,
,
7
9
4
4
4
4
4
4
8
1
1 L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu and G. Cai,
Dalton Trans., 2013, 42, 8606–8616.
2 Z. Huang, F. Li, B. Chen and G. Yuan, Catal. Sci. Technol.,
M. Li, S. Wu, X. Yang, J. Hu, L. Peng, L. Bai, Q. Huo and J.
Guan, Appl. Catal., A, 2017, 543, 61–66.
0 B. Zhang, J. Li, Y. Gao, R. Chong, Z. Wang, L. Guo, X. Zhang
and C. Li, J. Catal., 2017, 345, 96–103.
1 M. T. Raisanen, A. A. Hunaiti, E. Atosuo, M. Kemell, M.
2
016, 6, 2942–2948.
3 J. Zhang, M. Zhang, L. Lin and X. Wang, Angew. Chem., Int.
Ed., 2015, 54, 6297–6301.
4 J. Wen, J. Xie, Z. Yang, R. Shen, H. Li, X. Luo, X. Chen and X. Li,
ACS Sustainable Chem. Eng., 2017, 5, 2224–2236.
5 D. J. Martin, K. Qiu, S. A. Shevlin, A. D. Handoko, X. Chen, Z.
Guo and J. Tang, Angew. Chem., Int. Ed., 2014, 53, 9240–
Leskela and T. Repo., Catal. Sci. Technol., 2014,
573.
2 J. Yu, Y. Luan, Y. Qi, J. Hou, W. Dong, M. Yang and G. Wang,
RSC Adv., 2014, , 55028–55035.
3 F. Rajabi, A. Pineda, S. Naserian, A. M. Balu, R. Luque and A.
A. Romero, Green Chem., 2013, 15, 1232–1237.
4 C. Xu, L. Zhang, Y. An, X. Wang, G. Xu, Y. Chen and L. Dai,
Appl. Catal., A, 2018, 558, 26–33.
5 S. Ghosh, S. S. Acharyya, T. Sasaki and R. Bal, Green Chem.,
4, 2564–
2
1
1
1
1
4
9
245.
6 W. Zhu, F. Sun, R. Goei and Y. Zhou, Catal. Sci. Technol.,
017, , 2591–2600.
7 P. Yang, J. Zhao, J. Wang, B. Cao, L. Li and Z. Zhu, J. Mater.
Chem. A, 2015, , 8256–8259.
4
4
4
2
7
3
2
6 R. A. Sheldon, Catal. Today, 2015, 247, 4–13.
7 T. Matsumoto, M. Ueno, N. Wang and S. Kobayashi, Chem.
015, 17, 1867–1876.
8 I. Majeed, U. Manzoor, F. K. Kanodarwala, M. A. Nadeem, E.
Hussain, H. Ali, A. Badshah, J. A. Stride and M. A. Nadeem,
1
1
Catal. Sci. Technol., 2018,
9 J. Mao, Q. Zhang, P. Li, L. Zhang and W. Zhang, Chem. Eng. J.,
108, 334, 2568–2578.
0 J. Ding, L. Zhang, Q. Liu, W. Dai and G. Guan, Appl. Catal., B,
017, 203, 335–342.
8, 1183–1193.
Asian J., 2008,
8 V. R. Choudhary and D. K. Dumbre, Ind. Eng. Chem. Res.,
009, 48, 9471–9478.
9 J. Sun, Y. Han, H. Fu, X. Qu, Z. Xu and S. Zheng, Chem. Eng. J.,
017, 313, 1−9.
3, 196−214.
4
5
1
1
2
2
2
2
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 9
Please do not adjust margins