C O M M U N I C A T I O N S
Table 1. Propylene Polymerization Data for Catalysts 1-6/Methylaluminoxanea
Tacticitye
1
c
d
catalyst
methodb
Trxn
(°
C)
yield (g)
TOF (h-
)
M
n (g/mol)d
Mw/Mn
[m4]
[r4]
Rf
Tg
(
°
C)g
Tm (°
C)g
1h
2
3
A
A
A
A
A
A
B
B
B
B
0
0.16
0.13
0.40
1.11
1.22
2.05
0.44
0.17
0.32
1.23
9
35
bimodal
2710
broad
1.12
1.17
1.11
1.12
1.13
1.15
1.16
1.13
1.10
0.07
0.46
0.45
0.53
0.08
<0.01
0.61
0.54
0.48
0.27
0.26
<0.01
<0.01
<0.01
0.13
NAk
0.85
0.85
0.89
NAk
NAk
0.91
0.89
0.85
0.77
-8.6
-18.4
-14.1
-12.5
-5.5
NDl
NDl
NDl
69.5
NDl
NDl
96.4
70.1
NDl
NDl
0
0
0
0
0
105
293
323
1690
41
138
267
967
7290
4
27940
35440
123100
33700
13580
16760
59370
5
6i
4j
4
0.22
-2.9
-20
<0.01
<0.01
<0.01
0.02
-12.9
-13.8
-12.0
-9.2
0
4
4
20
50
a General conditions: catalyst in toluene (5 mL) was added to a propylene-saturated PMAO-IP solution (100 mL of toluene; [Al]/[Ti] ) 150) for 3.0 h.
b Method A: 0.03 mmol of catalyst, reactor pressure maintained at 30 psi during polymerization. Method B: 0.01 mmol of catalyst, closed reactor to
maintain a constant initial [propylene] at different temperatures. c Turnover frequency (TOF): mol propylene/(mol Ti‚h). d Determined using gel permeation
chromatography in 1,2,4-C6H3Cl3 at 140 °C versus polyethylene standards. e Determined by integration of the methyl region of the 13C NMR spectrum.
f Enantiofacial selectivity parameter, calculated from the 13C NMR spectrum using the equation [m4] ) R5 + (1 - R)5. g Determined using differential
h
j
scanning calorimetry (2nd heating). trxn ) 15.0 h. i 0.01 mmol 6. trxn ) 24.0 h. k Not applicable; data does not fit site control statistics. l None detected.
mers and continue to investigate the influence of ligand substituent
effects on polymer tacticity.
Acknowledgment. G.W.C. gratefully acknowledges support
from the Packard and Sloan Foundations, as well as support from
Mitsubishi Chemicals. The authors thank Dr. S. Reinartz for
synthesizing complex 1. This research made use of the Cornell
Center for Materials Research Shared Experimental Facilities
supported through the NSF MRSEC program (DMR-0079992).
Supporting Information Available: Catalyst synthesis and char-
acterization, X-ray data for 4, ethylene polymerization data, and block
copolymer characterization. This material is available free of charge
Figure 1. 13C NMR (1,1,2,2-C2D2Cl4, 125 MHz, 100 °C) of isotactic PP
formed by 4/MAO at 0 °C. Unmarked shifts are due to regioinversions.
References
(1) (a) Brintzinger, H. H.; Fischer, D.; Mu¨lhaupt, R.; Rieger, B.; Waymouth,
R. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143-1170. (b) Britovsek,
G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem., Int. Ed. 1999, 38,
428-447. (c) Gibson, V. C.; Spitzmesser, S. K. Chem. ReV. 2003, 103,
283-315.
(2) (a) Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Chem. ReV. 2000,
100, 1253-1345. (b) Coates, G. W. Chem. ReV. 2000, 100, 1223-1252.
(3) Coates, G. W.; Hustad, P. D.; Reinartz, S. Angew. Chem., Int. Ed. 2002,
41, 2236-2257.
(4) Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti,
G.; Moraglio, G. J. Am. Chem. Soc. 1955, 77, 1708-1710.
(5) (a) Jayaratne, K. C.; Sita, L. R. J. Am. Chem. Soc. 2000, 122, 958-959.
(b) Zhang, Y.; Keaton, R. J.; Sita, L. R. J. Am. Chem. Soc. 2003, 125,
9062-9069. (c) Zhang, Y.; Sita, L. R. J. Am. Chem. Soc. 2004, 126,
7776-7777.
(6) (a) Tshuva, E. Y.; Goldberg, I.; Kol, M. J. Am. Chem. Soc. 2000, 122,
10706-10707. (b) Kol, M.; Tshuva, E. Y.; Goldschmidt, Z. In Beyond
Metallocenes: Next-Generation Polymerization Catalysts; Patil, H. O.,
Hlatky, G. G., Eds.; American Chemical Society: Washington, DC, 2003;
Vol. 857, pp 62-75.
(7) (a) Busico, V.; Cipullo, R.; Friederichs, N.; Ronca, S.; Togrou, M.
Macromolecules 2003, 36, 3806-3808. (b) Busico, V.; Cipullo, R.;
Friederichs, N.; Ronca, S.; Talarico, G.; Togrou, M.; Wang, B. Macro-
molecules 2004 37, 8201-8203.
Figure 2. Plot of PP Mn (O) and Mw/Mn (9) versus yield using 4/MAO at
0 °C, determined by gel permeation chromatography (PE standards).
(8) (a) Matsui, S.; Tohi, Y.; Mitani, M.; Saito, J.; Makio, H.; Tanaka, H.;
Nitabaru, M.; Nakano, T.; Fujita, T. Chem. Lett. 1999, 1065-1066. (b)
Makio, H.; Kashiwa, N.; Fujita, T. AdV. Synth. Catal. 2002, 344, 477-
493. (c) Tian, J.; Coates, G. W. Angew. Chem., Int. Ed. 2000, 39, 3626-
3629. (d) Tian, J.; Hustad, P. D.; Coates, G. W. J. Am. Chem. Soc. 2001,
123, 5134-5135. (e) Mitani, M.; Furuyama, R.; Mohri, J.; Saito, J.; Ishii,
S.; Terao, H.; Nakano, T.; Tanaka, H.; Fujita, T. J. Am. Chem. Soc. 2003,
125, 4293-4305.
resulting in the formation of iPP via a site control mechanism. The
activity and facial selectivity of a given ketimine catalyst depend
on the size of R1. Presumably, catalyst 1 (R1 ) tBu) has the largest
steric interaction between R1 and the incoming monomer, resulting
in a high isospecific insertion barrier and making 1 a poor catalyst.
Conversely, catalyst 5 (R1 ) H) has the smallest steric interaction
between R1 and the incoming monomer. Although isospecific
insertion should be energetically accessible, the small R1 substituent
results in poor enantiofacial selectivity and atactic PP is formed.
Catalysts 2-4 form iPP owing to their intermediate ligand-
monomer interactions combined with appreciable facial selectivity.
We are currently using these catalysts to synthesize block copoly-
(9) Milano, G.; Cavallo, L.; Guerra, G. J. Am. Chem. Soc. 2002, 124, 13368-
13369.
(10) (a) Saito, J.; Onda, M.; Matsui, S.; Mitani, M.; Furuyama, R.; Tanaka,
H.; Fujita, T. Macromol. Rapid Commun. 2002, 23, 1118-1123. (b)
Prasad, A. V.; Makio, H.; Saito, J.; Onda, M.; Fujita, T. Chem. Lett. 2004,
33, 250-251.
(11) Reinartz, S.; Mason, A. F.; Lobkovsky, E. B.; Coates, G. W. Organo-
metallics 2003, 22, 2542-2544.
(12) Hustad, P. D.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 11578-11579.
JA044268S
9
J. AM. CHEM. SOC. VOL. 126, NO. 50, 2004 16327