5. Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N.
A. J. Med. Chem. 2015, 58 (21), 8315–8359.
6. Hodgest, J. A.; Raines, R. T. J. Am. Chem. Soc. 2003, 125 (31), 9262–
9263.
Scheme 5.
Chiral resolution a
7. Jäckel, C.; Salwiczek, M.; Koksch, B. Angew. Chemie - Int. Ed. 2006, 45
(25), 4198–4203.
8. Cornilescu, G.; Hadley, E. B.; Woll, M. G.; Markley, J. L.; Gellman, S.
H.; Cornilescu, C. C. Protein Sci. 2007, 16 (9), 14–19.
9. Marsh, E. N. G. Acc. Chem. Res. 2014, 47 (10), 2878–2886.
10. Qiu, Z.; Lin, X.; Zhou, M.; Liu, Y.; Zhu, W.; Chen, W.; Zhang, W.; Guo,
L.; Liu, H.; Wu, G.; Huang, M.; Jiang, M.; Xu, Z.; Zhou, Z.; Qin, N.;
Ren, S.; Qiu, H.; Zhong, S.; Zhang, Y.; Zhang, Y.; Wu, X.; Shi, L.; Shen,
F.; Mao, Y.; Zhou, X.; Yang, W.; Zhen Wu, J.; Yang, G.; Mayweg, A. V;
Shen, H. C.; Tang, G. J. Med. Chem. 2016, 59 (16), 7651–7666.
11. Jansen, K.; Heirbaut, L.; Verkerk, R.; Cheng, J. D.; Joossens, J.; Cos, P.;
Maes, L.; Lambeir, A.; Meester, I. De; Augustyns, K.; Van Der Veken, P.
J. Med. Chem. 2014, 57 (7), 3053–3074.
12. Gardelli, C.; Nizi, E.; Muraglia, E.; Crescenzi, B.; Ferrara, M.; Orvieto,
F.; Pace, P.; Pescatore, G.; Poma, M.; Ferreira, M. D. R. R.; Scarpelli, R.;
Homnick, C. F.; Ikemoto, N.; Alfieri, A.; Verdirame, M.; Bonelli, F.;
Paz, O. G.; Taliani, M.; Monteagudo, E.; Pesci, S.; Laufer, R.; Felock, P.;
Stillmock, K. A.; Hazuda, D.; Rowley, M.; Summa, V. J. Med. Chem.
2007, 50 (20), 4953–4975.
13. De Bruin, G.; Huber, E. M.; Xin, B. T.; Van Rooden, E. J.; Al-Ayed, K.;
Kim, K. B.; Kisselev, A. F.; Driessen, C.; Van Der Stelt, M.; Van Der
Marel, G. A.; Groll, M.; Overkleeft, H. S. J. Med. Chem. 2014, 57 (14),
6197–6209.
14. Hart, B. P.; Coward, J. K. Tetrahedron Lett. 1993, 34 (31), 4917–4920.
15. Tamaru, Y.; Kawamura, S.; Bando, T.; Tanaka, K.; Yoshida, Z. J. Org.
Chem. 1988, 53 (2), 5491–5501.
16. Shi, G.-Q.; Cai, W.-L. J. Org. Chem. 1995, 60 (20), 6289–6295.
17. Suzuki, A.; Mae, M.; Amii, H.; Uneyama, K. J. Org. Chem. 2004, 69
(15), 5132–5134.
18. Kirk, K. L. Org. Process Res. Dev. 2008, 12 (2), 305–321.
19. Bildstein, S.; Ducep, J.-B.; Jacobi, D.; Zimmermann, P. Tetrahedron Lett.
1995, 36 (28), 5007–5010.
20. Li, W.; Oliver, E.; Rojas, C.; Kalish, V.; Belyakov, S. WO 2004/071454.
21. Burnett, D.; Bursavich, M. G.; Mcriner, A. WO 2015/109109.
22. Kamenecka, T. M.; He, Y. WO 2016/025669.
23. Lal, G. S.; Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M.; Cheng, H. J. Org.
Chem. 1999, 64 (19), 7048–7054.
24. Hudlicky, M. Org. React. 1988, 35, 513–637.
aReagents: a) (i) D-tyrosine hydrazide, iPrOH, MeOH, 90°C-rt, 18h; (ii)
HCl 1N, 80%, 99%ee; b) L-tyrosine hydrazide, iPrOH, MeOH, 90°C-rt, 18h;
(ii) HCl 1N, 80%, 99%ee; c) Pd/C, H2, EtOAc, rt, 18h, 99%.
We next tackled the resolution of our racemic material.
Tyrosine hydrazide (Tyr-NHNH2) has been shown to efficiently
resolve several amino acid derivatives.28–30 Vogler and Lanz.28
reported that L-tyrosine hydrazide could resolve DL-amino acids
to provide the D-antipodes with high efficiency and enantiomeric
excess. Fortunately, in this case, the 3,3-bis-fluorine substitution
did not interfere with the resolution, and using D-tyrosine
hydrazide, we isolated the salt of acid 29 after filtration, with
99%ee and 80% yield after the first crystallization (Scheme 5).
D-tyrosine hydrazide was easily prepared from D-tyrosine
($0.50/gram) in two steps (93% yield on 3 kg scale) following
the same method as described for the L-tyrosine hydrazide after
recrystallization.31 An acidic wash removed the hydrazide, which
could be recovered and recycled.28 A second crystallization of the
mother liquor with L-tyrosine hydrazide afforded the opposite
enantiomer, (S)-3,3-difluoro-Cbz-proline 30 with 99%ee and
80% yield following acidic work-up. The same yield and
enantiomeric excess were observed during the resolution of acid
22 on milligram scale (20 mg) as well as on 70 g scale.
Enantiomeric excess was determined using chiral HPLC (see
supporting information). The deprotection of the Cbz group by
hydrogenation (99% yield) afforded enantiopure 3,3-
difluoroproline in 5 steps from commercially available starting
materials.
25. L’heureux, A.; Beaulieu, F.; Bennett, C.; Bill, D. R.; Clayton, S.;
Laflamme, F.; Mirmehrabi, M.; Tadayon, S.; Tovell, D.; Couturier, M. J.
Org. Chem. 2010, 75 (10), 3401–3411.
26. Moyer, M. P.; Feldman, P. L.; Rapoport, H. J. Org. Chem 1985, 50 (12),
5223–5230.
27. Moreau, R. J.; Sorensen, E. J. Tetrahedron 2007, 63 (28), 6446–6453.
28. Vogler, K.; Lanz, P. Helv. Chim. Acta 1966, 49 (4), 1348–1354.
29. Rodebaugh, R. M.; Cromwell, N. H. J. Heterocycl. Chem 1969, 6 (6),
993–994.
30. Jaen, J. C. e-Eros Encycl. Reagents Org. Synth. John Wiley Sons, LTd,
Ed. Chichester, UK 2011.
In summary, the synthetic pathway described herein gives
access to optically pure (S)- and (R)-3,3-difluoroproline with
good yields at each step. Purification by flash chromatography
was only necessary after the key fluorination step, allowing for
the easy production of gram quantities of the desired compound.
3,3-difluoroproline could be used as a scaffold in medicinal
chemistry or in non-natural peptide synthesis.
31. Kudelko, A.; Zielinski, W.; Ejsmont, K. Tetrahedron 2011, 67 (40),
7838–7845.
Acknowledgments
Supported by the National Institute on Drug Abuse
(DA033622 to T.M.K.).
Supplementary data
Supplementary
data
(experimental
protocols
and
spectroscopic data) associated with this article can be found in
the online version.
References
1. Swallow, S. Prog. Med. Chem. 2015, 54 (2), 65–133.
2. Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev.
2008, 37 (2), 267–432.
3. Hagmann, W. K. J. Med. Chem. 2008, 51 (15), 4359–4369.
4. Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317 (317), 1881–1886.