reactivity or biological activity, thus underpinning the need to
access a wide variety of pyrrole scaffolds efficiently from
straightforward starting materials.5 In addition to restrictions
based on the substitution pattern of the target compound, various
methods to synthesize differentially substituted pyrroles can
require expensive reagents, prolonged reaction times, or numer-
ous synthetic steps.
Catalytic Multicomponent Reactions for the
Synthesis of N-Aryl Trisubstituted Pyrroles
Chris V. Galliford and Karl A. Scheidt*
Department of Chemistry, Northwestern UniVersity, 2145
Sheridan Road, EVanston, Illinois 60208
We envisaged using our previously reported multicomponent
coupling reaction for the synthesis of nitrogen-containing
heterocycles for the synthesis of these pyrroles.6 This interest
was initiated by a desire to synthesize N-aryl-substituted pyrrole-
3,4-dicarboxylic acids for an application in materials/surface
attachment chemistry.7 We were surprised to discover relatively
few methods for the synthesis of the desired 3,4-substitution
pattern in the literature. For example, 4 has been reported on
four previous occasions, but none of the synthetic routes are
amenable to accommodate various substitutions efficiently in a
single-flask operation. Boyd and Wright have described the
preparation and chemistry of a range of unstable mesoionic
oxazolium-5-oxide perchlorates, including the dipolar cycload-
dition of these compounds with dimethyl acetylene dicarboxylate
(DMAD) to yield compound 4.8 Yamanaka has reported the
synthesis of the related 4-polyfluoroalkylated pyrrole-3-car-
boxylates through the 1,3-dipolar cycloaddition of a fluoro-
alkylated acetylenecarboxylate ester with the munchnones
described by Boyd.9 Additionally, phenylsydnonyl-substituted
pyrroles have been reported via a related cycloaddition.10 In
this approach, the pyrroles are prepared in five linear steps
starting from an N-aryl glycine derivative.
In 1984, Reutrakul reported the preparation of phenylsulfinyl
aziridines in modest to good yields from benzylidine anilines
and R-chloro R-lithio sulfoxides.11 Pyrolysis of these compounds
in the presence of DMAD promoted the thermal ring opening
of the aziridine at 90 °C to the corresponding azomethine ylide.
Cycloaddition followed by elimination of sulfinic acid afforded
the pyrroles in good yield. Similarly, Katritzky has reported
the synthesis of the compound 10 from the analogous thermal
reaction of 2-benzotriazolylaziridines in the presence of diethyl
acetylenedicarboxylate.12 Although the aziridine precursors are
readily accessed in this case, the cycloaddition step requires a
prolonged reaction time (48 h at 100 °C) to access the target
ReceiVed NoVember 22, 2006
Dirhodium(II) salts efficiently catalyze the three-component
assembly reaction of an imine, diazoacetonitrile (DAN), and
an activated alkynyl coupling partner to form substituted 1,2-
diarylpyrroles in moderate to good yields. The transition-
metal-catalyzed decomposition of the diazo compound in the
presence of the imine presumably generates a transient
azomethine ylide that undergoes cycloaddition with dipo-
larophiles in a highly convergent manner.
Pyrroles are plentiful structural motifs in natural products,1
medicinal agents,2 and materials chemistry.3 There are many
efficient methods for the synthesis of this important class of
heterocycle, but all of the various approaches have certain
restrictions regarding the scope and placement of the substitution
pattern around the heterocycle core. For example, our recently
published N-heterocyclic carbene-catalyzed, one-pot approach
to the synthesis of pyrroles using an acylsilane, R,â-unsaturated
ketone, and primary amine4 does not access the 3,4-diester-
substituted pyrroles described here. In many instances, specific
pyrrole substitution patterns are more important than others for
(1) (a) Bullington, J. L.; Wolff, R. R.; Jackson, P. F. J. Org. Chem. 2002,
67, 9439-9442. (b) Groves, J. K.; Cundasaway, N. E.; Anderson, H. G.
Can. J. Chem. 1973, 51, 1089-1098. (c) Andersen, R. J.; Faulkner, D. J.;
Cun-heng, H.; van Duyne, G.; Clardy, J. J. Am. Chem. Soc. 1985, 107,
5492-5495. (d) Yoshida, W. Y.; Lee, K. K.; Carroll, A. R.; Scheuer, P. J.
HelV. Chim. Acta 1992, 75, 1721-1725. (e) Palermo, J. A.; Florencia, M.;
Brasco, R.; Seldes, A. M. Tetrahedron 1996, 52, 2727-2732. (f) Rudi, A.;
Goldberg, I.; Stein, Z.; Frolow, F.; Benayahu, Y.; Schleyer, M.; Kashman,
Y. J. Org. Chem. 1994, 59, 999-1003.
(2) (a) Biava, M.; Fioravanti, R.; Porretta, G. C.; Deidda, D.; Maullo,
C.; Pompei, P. Bioorg. Med. Chem. Lett. 1999, 9, 2983-2988. (b)
Mortenson, D. S.; Rodriguez, A. L.; Carlson, K. E.; Sun, J.; Katzenellen-
bogen, B. S.; Katzenellenbogen, J. A. J. Med. Chem. 2001, 44, 3838-
3848.
(3) (a) Langley, P. J.; Davis, F. J.; Mitchell, G. R. J. Chem. Soc., Perkin
Trans. 2 1997, 2229-2240. (b) Cooper, J. M.; Glidle, A.; Hillman, A. R.;
Ingram, M. D.; Ryder, C.; Ryder, K. S. Phys. Chem. Chem. Phys. 2004, 6,
2403-2408. (c) Li, X.; Run-Feng, C.; Huang, M. R.; Zhu, M.-Z.; Chen,
K. J. Polym. Sci., Part A Polym. Chem. 2004, 42 (9), 2073-2092. (d)
Kiskan, B.; Akar, A.; Nilgun, K.; Ustamehmetoglu, B. J. App. Polym. Sci.
2005, 96 (5), 1830-1836.
(4) (a) Bharadwaj, A. R.; Scheidt, K. A. Org. Lett. 2004, 6, 2465-2468.
(b) Mattson, A. E.; Bharadwaj, A. R.; Zuhl, A. M.; Scheidt, K. A. J. Org.
Chem. 2006, 71, 5715-5724.
(5) 1,2-Diaryl pyrroles (with adjacent aryl substituents) are common
structural motifs in biologically active natural products and medicinal agents,
whereas the analogous 1,3-diaryl motif is less common. For an excellent
review and discussion of pyrroles containing adjacent aryl groups, see:
Bellina, F.; Rossi, R. Tetrahedron 2006, 62, 7213-7256.
(6) (a) Galliford, C. V.; Beenen, M. A.; Nguyen, S. T.; Scheidt, K. A.
Org. Lett. 2003, 5 (19), 3487-3490. (b) Galliford, C. V.; Martenson, J. S.;
Stern, C.; Scheidt, K. A. Chem. Commun. 2006, in press, available online
as an advance article: DOI: 10.1039/b609155e.
(7) Carboxylates provide anchoring points for TiO2 surfaces with strong
binding affinities: Gallopini, E. Coord. Chem. ReV. 2004, 248, 1283-1297.
(8) (a) Boyd, G. V. Chem. Commun. 1968, 22, 1410. (b) Boyd, G. V.;
Wright, P. H. J. Chem. Soc., Perkin Trans. 1 1972, 909-913. (c) Boyd, G.
V.; Wright, P. H. J. Chem. Soc., Perkin Trans. 1 1972, 914-918.
(9) Funabiki, K.; Ishihara, T.; Yamanaka, H. J. Fluorine Chem. 1995,
71 (1), 5-7.
(10) Lo, C. W.; Chan, W. L.; Szeto, Y. S.; Yip, C. W. Chem. Lett. 1999,
513-514.
(11) (a) Reutrakul, V.; Prapansiri, V.; Panyachotipun, C. Tetrahedron
Lett. 1984, 25 (18), 1949-1950. (b) Mahidol, C.; Reutrakul, V.; Prapansiri,
V.; Panyachotipun, C. Chem. Lett. 1984, 969-972.
(12) Katritzky, A. R.; Yao, J.; Bao, W.; Qi, M.; Steel, P. J. J. Org. Chem.
1999, 64, 346-350.
10.1021/jo0624086 CCC: $37.00 © 2007 American Chemical Society
Published on Web 01/27/2007
J. Org. Chem. 2007, 72, 1811-1813
1811