6940
S. Ioannou, A. V. Nicolaides / Tetrahedron Letters 50 (2009) 6938–6940
6. (a) Baughman, G. L. J. Org. Chem. 1964, 29, 238; (b) Gagneux, A. R.; Meier, R.
Table 2
Synthesis13 of diiodide 2 from dimesylate 6
Tetrahedron Lett. 1969, 17, 1365; (c) Stetter, H.; Tacke, P. Chem. Ber. 1963, 25,
694.
7. Zalikowski, J. A.; Gilbert, K. E.; Borden, W. T. J. Org. Chem. 1980, 45, 346.
8. Bertz, S. H. J. Org. Chem. 1985, 50, 35.
a
Entry Solvent
NaI:6
Tb
t (d) % Yield of 2c
(°C)
9. Nicolaides, A.; Smith, J. M.; Kumar, A.; Barnhart, D. M.; Borden, W. T.
Organometallics 1995, 14, 3475.
10. (a) Cabri, W.; Roletto, J.; Olmo, S.; Fonte, P.; Ghetti, P.; Songia, S.; Mapelli, E.;
Alpegiani, M.; Paissoni, P. Org. Process Res. Dev. 2006, 10, 198; (b) Kshirsagar, T.
A.; Hurley, L. H. J. Org. Chem. 1998, 63, 5722.
11. Storck, P.; Aubertin, A. M.; Grierson, D. S. Tetrahedron Lett. 2005, 46, 2919.
12. Synthesis of tricyclo[3.3.1.03,7]nonane-3,7-diyl dimesylate (6). To a solution of diol
3 (1.00 g, 6.49 mmol) in pyridine (10 mL), mesyl chloride (CH3SO2Cl) (5.02 mL,
65 mmol) was added slowly with stirring at ambient temperature. The mixture
was then heated at 120 °C for 5 h. After cooling, crushed ice (100 g) was added
and the mixture was extracted with CH2Cl2 (5 Â 20 mL). The combined organic
phase was washed with 2 M HCl (2 Â 40 mL), H2O (2 Â 20 mL), saturated
aqueous NaHCO3 (2 Â 20 mL), and dried (Na2SO4). After filtration and removal
of the solvent under reduced pressure, a brown solid (1.92 g, 96%) was isolated.
Recrystallization from THF/hexane afforded pure 6 (1.71 g, 85%) as colorless
1d,e
2d,e
3d,e
4f
[bmim][BF4]/CH3CN
10 (KI)
10 (KI)
20 (KI)
—
100
150
150
130
160
1
1
1
1
1
—
—
—
—
—
[bmim][BF4]
[bmim][BF4]/ H3PO4 99%
PMIMI
Tetrabutylammonium
iodide
CH3SO3H (70%)
H3PO4 (99%)
H3PO4 (99%)
H3PO4 (99%)
H3PO4 (99%)
H3PO4 (99%)
H3PO4 (99%)
H3PO4 (99%)
H3PO4 (99%)
5
—
6
7
8
9
10
40
40
60
100
200
16
40 (KI)
40
(CsI)
60
60
120
170
150
150
150
150
150
170
170
1
1
3
1
1
1
2
1
1
<5
46
52
72
73
75
54
44
40
10
11
12
13
14
crystals, mp 127–128 °C; mmax(KBr) 3449, 2943, 1464, 1414, 1341, 1190, 1169,
1101, 1018, 976, 955, 856, 824, 802, 760, 669, 615, 565, 515, 474 cmÀ1; dH
(300 MHz, CDCl3) 3.10 (6H, –CH3, s), 2.50 (6H(4eq+2CH), d, J 6.9 Hz), 2.26 (4Hax, d,
J 9.0 Hz), 1.51 (2Hbridge, s); dC (75.5 MHz, CDCl3) 91.30 (–CO), 47.42 (–CH2),
40.60 (–CH3), 34.98 (–CH), 32.28 (–CH2 bridge). Anal. Calcd for C11H18O6S2: C,
42.6; H, 5.8; S, 20.7. Found: C, 42.3; H, 5.7; S, 20.3. HRMS (TOF MS ES+) calcd for
C11H1906S2 311.0623 found: 311.0629.
15g
16g
17h
18g
H3PO4 (99%)
H3PO4 (99%)
H3PO4 (99%)
H3PO4 (99%)
100
170
150
150
1
1
6 h
6 h
35
45
77
75
200
60
13. Synthesis of 3,7-diiodo-tricyclo[3.3.1.03,7]nonane 2.5 In a round-bottomed flask
equipped with a reflux condenser, H3PO4 (99%, 15 g), dimesylate 3 (80 mg,
0.26 mmol), and NaI (7.74 g, 52 mmol) were added. The mixture was stirred at
150 °C for 6 h. After cooling, H2O (100 mL) was added slowly to the mixture.
The resulting purple solution was extracted with CH2Cl2 (4 Â 50 mL) and the
combined organic phase was washed with aqueous sodium thiosulfate
(1 Â 50 mL), dried (Na2SO4) and the solvent was removed under vacuum to
give 2 (74 mg, 77%). Purification by dry flash chromatography (100% hexane)
a
b
c
Molar ratio of NaI to 6. On a scale of 0.16 mmol of 6 unless otherwise specified.
External bath temperature.
Yield of crude product.
bmim = 1-n-butyl-3-methylimidazolium.
On a scale of 0.5 mmol of 6.
PMIMI = 1-methyl-3-propylimidazolium iodide.
On a scale of 0.32 mmol of 6.
d
e
f
g
h
afforded 2 (69 mg, 72%) as colorless crystals, mp 130–131 °C;
1450, 1433, 1333, 1290, 1229, 1151, 1103, 1024, 970, 930, 903, 862, 849, 793,
770, 500 (C-I) cmÀ1; dH (300 MHz, CDCl3) 2.76 (4Heq, d, J = 12.0 Hz), 2.45 (4Hax
mmax(KBr) 2926,
On a scale of 0.26 mmol of 6.
,
d, J = 10.8 Hz), 1.91 (2H, s, –CH), 1.63 (2H, s, –CH2 bridge); dC (75.5 MHz, CDCl3)
57.69 (–CH2), 53.34 (–CI), 39.38 (–CH), 30.60 (–CH2 bridge).
accessible from diol 3. Indirect iodination of 3 via dimesylate 6, can
be achieved within six hours in 60% overall yield. This indirect
iodination method may be useful for other tertiary alcohols that
do not form stable carbocations.
14. In partially completed iodination reactions small amounts of 3-iodo-7-
hydroxy-tricyclo[3.3.1.03,7]nonane (8) were present. Compound
8
was
light-yellow
max(KBr) 3228 (O–H), 2930, 1722, 1454,
1398, 1344, 1331, 1300, 1244, 1215, 1184, 1136, 1109, 1063, 1007, 962, 937,
907, 870, 816, 718, 631, 520, 459, 422, 411; dH (300 MHz, CDCl3) 2.68 (2Heq-I
isolated by chromatography (20% hexane/CH2Cl2) as
crystalline solid: mp 52–54 °C;
a
m
Acknowledgements
,
dd, J >2, 12.9 Hz), 2.40 (2Hax-I, dd, J = 2.1, 11.1 Hz), 2.31 (2H, s, –CH), 2.10 (1H, s,
–OH), 1.98 (2Heq-OH, dd, J >2, 12.3 Hz), 1.88 (2Hax-OH, dd, J >2, 10.8 Hz), 1.55
(2H, s, CH2 bridge); dC (75.5 MHz, CDCl3) 82.46 (–CO), 57.33 (–CH2), 54.62 (–CI),
48.59 (–CH2), 37.92 (–CH), 31.69 (–CH2 bridge).
Financial support from the Research Promotion Foundation of
Cyprus (TNNFN0308/01) and the University of Cyprus (SRP) is
gratefully acknowledged. The A.G. Leventis Foundation is gratefully
acknowledged for a generous donation which enabled the pur-
chase of the NMR spectrometer at the University of Cyprus.
15. Synthesis of tricyclo[3.3.1.03,7]nonane-3,7-diol cyclic sulfate 7. Diol 3 (500 mg,
3.25 mmol) was added to concd H2SO4 (95–97%, 5 mL) and the resulting
mixture was stirred at 130 °C for 1 h. After cooling, H2O (100 mL) was added
very slowly. The solution was extracted with CH2Cl2 (4 Â 20 mL), and the
combined organic phase was dried (Na2SO4) and the solvent was removed
under vacuum to give crude 7 (629 mg, 90%). Mp 117–118 °C; mmax(KBr) 2955,
References and notes
2922, 2853, 1460, 1382, 1337, 1306, 1242, 1202, 1090, 960, 837, 812, 777; dH
(300 MHz, CDCl3) 2.65 (2H, s, –CH), 2.32 (4Heq, d, J = 11.1 Hz), 2.19 (4Hax, d,
J = 10.8 Hz), 1.55 (2H, s, –CH2 bridge); dC (75.5 MHz, CDCl3) 94.47 (C–O), 46.44
(CH2), 37.04 (CH), 33.00 (CH2 bridge). Fnal. Calcd for C9H12O4S: C, 50.0; H, 5.6;
S, 14.8. Found: C, 50.4; H, 5.6; S, 14.4.
1. (a) Borden, W. T. Chem. Rev. 1989, 89, 1095; (b) Borden, W. T. Synlett 1996, 711.
2. Vazquez, S.; Camps, P. Tetrahedron 2005, 61, 5147.
3. Nicolaides, A. In Strained Hydrocarbons. Beyond the van’t Hoff and Lebel
Hypothesis; Dodziuk, H., Ed.; Wiley-VCH, 2009; pp 112–122.
4. Renzoni, G. E.; Yin, T.; Borden, W. T. J. Am. Chem. Soc. 1986, 108, 7121.
5. Borden, W. T.; Ravindranathan, T. J. Org. Chem. 1971, 36, 4125.
16. Byun, H.-S.; He, L.; Bittman, R. Tetrahedron 2000, 56, 7051.