References and notes
1
.
Baker SJ, Reddy EP. CDK4: A key player in the cell cycle, development, and cancer. Genes and
Cancer. 2012;3(11-12): 658-669.
Cordon-Cardo C. Mutation of cell cycle regulators: Biological and clinical implications for
human neoplasia. American Journal of Pathology. 1995;147(3): 545-560.
Ortega S, Malumbres M, Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and
cancer. Biochimica et Biophysica Acta - Reviews on Cancer. 2002;1602(1): 73-87.
2
.
3
.
4
7
5
6
.
Nevins JR. The Rb/E2F pathway and cancer. Human Molecular Genetics. 2001;10(7): 699-
03.
.
.
Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell. 2002;2(2): 103-112.
Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic
target in cancer. Nature Reviews Cancer. 2011;11(8): 558-572.
Kollmann K, Heller G, Schneckenleithner C, et al. A kinase-independent function of CDK6
links the cell cycle to tumor angiogenesis. Cancer Cell. 2013;24(2): 167-181.
Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. Protacs: Chimeric
7
.
8
.
molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation.
Proceedings of the National Academy of Sciences of the United States of America. 2001;98(15): 8554-
8
9
559.
.
An S, Fu L. Small-molecule PROTACs: An emerging and promising approach for the
development of targeted therapy drugs. EBioMedicine. 2018;36: 553-562.
0. Churcher I. Protac-Induced Protein Degradation in Drug Discovery: Breaking the Rules or Just
Making New Ones? Journal of Medicinal Chemistry. 2018;61(2): 444-452.
1. Lebraud H, Heightman TD. Protein degradation: a validated therapeutic strategy with
exciting prospects. Essays in biochemistry. 2017;61(5): 517-527.
2. Mainolfi N, Rasmusson T. Targeted Protein Degradation. Annual Reports in Medicinal
Chemistry. 2017;50: 301-334.
3. Neklesa TK, Winkler JD, Crews CM. Targeted protein degradation by PROTACs.
Pharmacology and Therapeutics. 2017;174: 138-144.
4. Brand M, Jiang B, Bauer S, et al. Homolog-Selective Degradation as a Strategy to Probe the
Function of CDK6 in AML. Cell Chemical Biology. 2019;26(2): 300-306.e309.
5. Jiang B, Wang ES, Donovan KA, et al. Development of Dual and Selective Degraders of Cyclin-
Dependent Kinases 4 and 6. Angewandte Chemie (International ed in English). 2019;58(19): 6321-
1
1
1
1
1
1
6
1
326.
6.
Rana S, Bendjennat M, Kour S, et al. Selective degradation of CDK6 by a palbociclib based
PROTAC. Bioorganic and Medicinal Chemistry Letters. 2019;29(11): 1375-1379.
7. Su S, Yang Z, Gao H, et al. Potent and Preferential Degradation of CDK6 via Proteolysis
Targeting Chimera Degraders. Journal of Medicinal Chemistry. 2019;62(16): 7575-7582.
1
1
0
8.
Fry DW, Harvey PJ, Keller PR, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD
332991 and associated antitumor activity in human tumor xenografts. Molecular Cancer
Therapeutics. 2004;3(11): 1427-1437.
9. Bondeson DP, Smith BE, Burslem GM, et al. Lessons in PROTAC Design from Selective
Degradation with a Promiscuous Warhead. Cell Chemical Biology. 2018;25(1): 78-87.e75.
0. Wang Z, He N, Guo Z, et al. Proteolysis Targeting Chimeras for the Selective Degradation of
Mcl-1/Bcl-2 Derived from Nonselective Target Binding Ligands. Journal of Medicinal Chemistry.
1
2
2
2
019;62(17): 8152-8163.
1. Gadd MS, Testa A, Lucas X, et al. Structural basis of PROTAC cooperative recognition for
selective protein degradation. Nature Chemical Biology. 2017;13(5): 514-521.
2. Hughes SJ, Ciulli A. Molecular recognition of ternary complexes: a new dimension in the
structure-guided design of chemical degraders. Essays in biochemistry. 2017;61(5): 505-516.
3. Smith BE, Wang SL, Jaime-Figueroa S, et al. Differential PROTAC substrate specificity dictated
by orientation of recruited E3 ligase. Nature Communications. 2019;10(1).
2
2