10.1002/anie.201811783
Angewandte Chemie International Edition
COMMUNICATION
Lee, Org. Lett. 2013, 15, 1938; f) O. J. Diamond, T. B. Marder, Org.
Chem. Front. 2017, 4, 891.
produced in the presence of CuCl when terminal alkynes derived
from estradiol and cinchonidine (see SI for details) were used as
the trapping agents. This is especially notable because these
molecules contain additional potentially competing reactive
moieties that include phenol,[8] alcohol,[18] tertiary amine,[19]
[5]
a) C. S. Xie, L. F. Liu, Y. H. Zhang, P. X. Xu, Org. Lett. 2008, 10, 2393;
b) M. Jeganmohan, S. Bhuvaneswari, C. H. Cheng, Angew. Chem. Int.
Ed. 2009, 48, 391; c) H. Yoshida, T. Morishita, H. Nakata, J. Ohshita,
Org. Lett. 2009, 11, 373; d) S. K. Akubathini, E. Biehl, Tetrahedron Lett.
2009, 50, 1809; e) N. Kerisit, L. Toupet, P. Larini, L. Perrin, J.-C.
Guillemin, Y. Trolez, Chem. Eur. J. 2015, 21, 6042.
ether,[20] alkene,[21] cyclic alkane,[22] and quinoline sites[23] [24]
.
A mechanistic proposal for the hydroalkynylation reaction is
shown in Figure 5. At the top are possible ways by which an
initial copy of the requisite Cu-acetylide (34) could be formed.
Sacrificial reaction of one benzyne with CuCl would give the
arylcopper species 32, which could then engage in proton
exchange with the terminal alkyne 6.; indeed, we have detected
low levels of the benzyne + HCl adduct 33 by GCMS analysis of
a crude reaction mixture. Alternatively, acetonitrile could function
as a base to deprotonate a CuCl•6 complex, leading to the HCl
adduct 35[25] or its iminium hydrochloride salt 35•HCl.[26] Indeed,
we have observed that the choice of acetonitrile as solvent is
critical for success of the hydroalkynylation reaction. Once
produced, 34 could then enter the cycle highlighted by the gray
box. Alkynyl-cupration of benzyne 11 would give 36 and proton
exchange with 6 would lead to 25 and close the cycle.
[6]
[7]
R. A. Dhokale, S. B. Mhaske, Synthesis 2018, 50, 1.
a) P. H. Y. Cheong, R. S. Paton, S. M. Bronner, G. Y. J. Im, N. K. Garg,
K. N. Houk, J. Am. Chem. Soc. 2010, 132, 1267; b) A. N. Garr, D. H.
Luo, N. Brown, C. J. Cramer, K. R. Buszek, D. VanderVelde, Org. Lett.
2010, 12, 96.
[8]
[9]
J. T. Zhang, D. W. Niu, V. A. Brinker, T. R. Hoye, Org. Lett. 2016, 18,
5596.
D. Perez, D. Pena, E. Guitian, Eur. J. Org. Chem. 2013, 2013, 5981.
[10] Instead, we observed benzocyclobutadiene-derived products that arise
from trapping of the benzyne by an aryl alkyne: X. Xiao, B. P. Woods,
W. Xiu, T. R. Hoye, Angew. Chem. Int. Ed. 2018, 57, 9901.
[11] J. H. Chen, V. Palani, T. R. Hoye, J. Am. Chem. Soc. 2016, 138, 4318.
[12] X. Xiao, T. R. Hoye, Nat. Chem. 2018, 10, 838.
[13] M. Nakano, K. Takimiya, Chem. Mater. 2017, 29, 256.
[14] C. C. C. J. Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew.
Chem. Int. Ed. 2012, 51, 5062, and refs therein.
[15] a) A. F. Adeleke, A. P. N. Brown, L. J. Cheng, K. A. M. Mosleh, C. J.
Cordier, Synthesis 2017, 49, 790; b) Copper-Mediated Cross-Coupling
Reactions, Eds.: G. Evano, N. Blanchard, Wiley-VCH: Hoboken, 2013.
[16] R. Karmakar, S. Y. Yun, K. P. Wang, D. Lee, Org. Lett. 2014, 16, 6.
[17] Competition experiments showed that: (i) phenylacetylene (6a) and 4-
fluorophenylacetylene (6b) reacted at very similar rates and (ii)
exchange (direct or indirect, the latter through the catalytic cycle)
between a preformed Cu-acetylide (from 6a) and a second, terminal
alkyne (6b) was occurring.
In conclusion, we have developed an efficient copper-
catalyzed protocol for installation of an alkynyl substituent onto a
HDDA-generated benzyne. 1-Bromoalkynes lead to products of
bromoalkynylation in which the bromide has preferentially
engaged the more electrophilic carbon of the (necessarily)
unsymmetrical benzyne (Figure 2a). The hydroalkynylation
reaction of terminal alkynes occurs in complementary fashion;
namely, the alkyne carbon is now attached to the more
electrophilic carbon (Figure 4). Catalytic cycles for each of these
two reaction processes are proposed (Figures 2b and 5). The
potential utility of the ortho-alkynylbromobenzene products as
substrates in further transformations of interest is also
demonstrated (Figure 3).
Acknowledgements
[18] P. H. Willoughby, D. W. Niu, T. Wang, M. K. Haj, C. J. Cramer, T. R.
Hoye, J. Am. Chem. Soc. 2014, 136, 13657.
This study was supported by the U.S. Dept. of Health and
Human Services [National Institute of General Medical Sciences
(R01 GM65597 then R35 GM127097)] and the National Science
Foundation (CHE-1665389). A portion of the NMR data were
obtained with an instrument funded by the NIH Shared
Instrumentation Grant program (S10OD011952).
[19] S. P. Ross, T. R. Hoye, Nat. Chem. 2017, 9, 523.
[20] J. P. N. Brewer, H. Heaney, J. M. Jablonski, Tetrahedron Lett. 1968, 42,
4455.
[21] R. Karmakar, P. Mamidipalli, S. Y. Yun, D. Lee, Org. Lett. 2013, 15,
1938.
[22] D. W. Niu, P. H. Willoughby, B. P. Woods, B. Baire, T. R. Hoye, Nature
2013, 501, 531.
[23] A. Bhunia, T. Roy, P. Pachfule, P. R. Rajamohanan, A. T. Biju, Angew.
Chem. Int. Ed. 2013, 52, 10040.
Keywords: metal-catalyzed aryne trapping • copper catalysis •
alkynylations
[24] J. A. García-López, M. F. Greaney, Chem. Soc. Rev. 2016, 45, 6766,
and refs. 3–16 therein to previous reviews.
[1]
[2]
[3]
T. Morishita, H. Yoshida, J. Ohshita, Chem. Commun. 2010, 46, 640.
Y. Himeshima, T. Sonoda, H. Kobayashi, Chem. Lett. 1983, 12, 1211.
Various Cu(I) salts have been reported to oligomerize Kobayashi
benzynes: Y. Mizukoshi, K. Mikami, M. Uchiyama, J. Am. Chem. Soc.
2015, 137, 74.
[25] For evidence supporting the existence of 1:1 adducts of HCl or HBr and
acetonitrile (cf. 35) see: a) F. E. Murray, W. G. Schneider, Can. J.
Chem. 1955, 33, 797; b) J. S. Bajwa, X. L. Jiang, J. Slade, K. Prasad,
O. Repic, T. J. Blacklock, Tetrahedron Lett. 2002, 43, 6709.
[26] For evidence supporting the existence of 2:1 adducts of HCl, HBr, or HI
and acetonitrile (cf. 35•HCl) see ref 25a and: a) G. J. Janz, S. S.
Danyluk. J. Am. Chem. Soc. 1959, 81, 3850; b) J. M. Williams, S. W.
[4]
a) K. Miyawaki, R. Suzuki, T. Kawano, I. Ueda, Tetrahedron Lett. 1997,
38, 3943; b) A. Z. Bradley, R. P. Johnson, J. Am. Chem. Soc. 1997,
119, 9917; c) J. A. Tsui, B. T. Sterenberg, Organometallics 2009, 28,
4906; d) T. R. Hoye, B. Baire, D. Niu, P. H. Willoughby, B. P. Woods,
Nature 2012, 490, 208; e) R. Karmakar, P. Mamidipalli, S. Y. Yun, D.
Peterson, G. M. Brown, Inorg. Chem. 1968, 7, 2577.
A neutron
diffraction study in ref 26b established the formulation of 35•HCl as
MeC(Cl)=NH2+Cl– rather than MeC(Cl)2NH2.
This article is protected by copyright. All rights reserved.