COMMUNICATIONS
[7] a) G. M. Atkins, E. M. Burgess, J. Am. Chem. Soc. 1968, 90, 4744
4745; b) G. M. Atkins, E. M. Burgess, J. Am. Chem. Soc. 1972, 94,
6135 6141; c) E. M. Burgess, H. R. Penton, E. A. Taylor, J. Org.
Chem. 1973, 38, 26 31.
[8] For reviews on the chemistry of 1, see: a) P. Taibe, S. Mobashery in
Encyclopedia of Reagents for Organic Synthesis, Vol. 5 (Ed.: L. A.
Paquette), Wiley, Chichester, 1995, pp. 3345 3347; b) S. Burckhardt,
Synlett 2000, 559.
A Supramolecular Array of Fullerenes by
Quadruple Hydrogen Bonding**
¬
Luis Sanchez, Minze T. Rispens, and
Jan C. Hummelen*
Fullerenes have interesting properties that may be utilized
in a variety of applications including organic photovoltaic
(PV) devices.[1] Especially organic bulk-heterojunction PV
cells consisting of a blend of a p-conjugated polymer and a
fullerene derivative[2] have received much attention recently.
A way to improve the efficiency of these so called ™plastic∫
solar cells is the optimization of the morphology of the
photoactive layer. A potential way to attain this goal is
through supramolecular assembly of the constituents. Hydro-
gen bonding is particularly useful in the construction of
supramolecular structures.[3] Relatively little work on C60-
based polymers[4] and supramolecular C60 derivatives has been
performed.[5] So far, only dimeric compounds have been
obtained by a supramolecular approach.[6] Monofunctional-
ized C60 derivatives bearing one or two hydrogen-bonding
moieties on the substituent can serve as building blocks for the
preparation of fullerene-containing dimers and arrays, by
using the strength, directionality, and specificity, characteristic
of hydrogen bonding.[3] Our group[7] and the group of MartÌn[8]
have recently reported on the synthesis of supramolecular C60
dimers bearing Meijer×s self-complementary 2-ureido-4-pyr-
imidinones which have a donor donor acceptor acceptor
(DDAA) hydrogen bonding motif. This motif gives rise to a
very high dimerization constant (Kd ꢀ 6 Â 107 mÀ1), as a result
of attractive secondary interactions.[9] The presence of two
ureidopyrimidinone groups in a molecule results in supra-
molecular polymers of exceptional properties.[10] After our
first exercise on a fullerene with one coupling unit,[7] we now
report the synthesis and spectroscopic characterization of the
first hydrogen-bonded supramolecular array, formed by a
(methano)fullerene with two coupling units.
[9] a) L. Wei, W. D. Lubell, Org. Lett. 2000, 2, 2595 2598; b) L. T.
Boulton, H. T. Stock, J. Raphy, D. C. Horwell, J. Chem. Soc. Perkin
Trans. 1 1999, 1421 1429; c) D. Ok, M. H. Fisher, M. J. Wyvratt, P. T.
Meinke, Tetrahedron Lett. 1999, 40, 3831 3834; d) B. M. Kim, S. M.
So, Tetrahedron Lett. 1998, 39, 5381 5384; e) B. Aguilera, A.
¬
Fernandez-Mayorales, C. Jaramillo, Tetrahedron 1997, 53, 5863
5876; f) M. E. Van Dort, Y.-W. Jung, P. S. Sherman, M. R. Kilbourn,
D. M. Wieland, J. Med. Chem. 1995, 38, 810 815; g) K. K. Andersen,
M. G. Kociolek, J. Org. Chem. 1995, 60, 2003 2007; h) M. Okuda, K.
Tomioka, Tetrahedron Lett. 1994, 35, 4585 4586; i) K. K. Andersen,
D. D. Bray, S. Chumpradit, M. E. Clark, G. J. Habgood, C. D.
Hubbard, K. M. Young, J. Org. Chem. 1991, 56, 6508 6516; j) G. J.
White, M. E. Garst, J. Org. Chem. 1991, 56, 3177 3178; k) J. E.
Baldwin, A. C. Spivey, C. J. Schofield, Tetrahedron: Asymmetry 1991,
1, 881 884; l) D. Alker, K. J. Doyle, L. M. Harwood, A. McGregor,
Tetrahedron: Asymmetry 1991, 1, 877 880; m) T. A. Lyle, C. A.
Magill, S. M. Pitzenberger, J. Am. Chem. Soc. 1987, 109, 7890 7891.
[10] Although 1 is available from several commercial sources at prices
ranging from US$36 45 per gram, the material is easily synthesized
during the course of an afternoon in multigram quantities at a price of
less than US$1 per gram by following the procedure described in
ref. [7c].
[11] a) K. L. Reddy, K. B. Sharpless, J. Am. Chem. Soc. 1998, 120, 1207
1217; b) G. Li, H. H. Angert, K. B. Sharpless, Angew. Chem. 1996, 108,
2995 2999; Angew. Chem. Int. Ed. Engl. 1996, 35, 2813 2817.
[12] a) C. M. Bellucci, A. Bergamini, P. G. Cozzi, A. Papa, E. Tagliavini, A.
Umani-Ronchi, Tetrahedron: Asymmetry 1997, 8, 895 902; b) C. H.
Senanayake, L. M. DiMichele, J. Liu, L. E. Fredenburgh, K. M. Ryan,
F. E. Roberts, R. D. Larsen, T. R. Verhoeven, P. J. Reider, Tetrahedron
Lett. 1995, 36, 7615 7618; c) C. H. Senanayake, F. E. Roberts, L. M.
DiMichele, K. M. Ryan, J. Liu, L. E. Fredenburgh, B. S. Foster, A. W.
Douglas, R. D. Larsen, T. R. Verhoeven, P. J. Reider, Tetrahedron
Lett. 1995, 36, 3993 3996.
[13] For alternate, multistep approaches to cis-1,2-amino alcohols from
diols, see: a) M. K. Lakshman, B. Zajc, Tetrahedron Lett. 1996, 37,
2529 2532; b) A. K. Ghosh, S. P. Mckee, W. M. Sanders, Tetrahedron
Lett. 1991, 32, 711 714.
The synthesis of target monomer 8 (Scheme 1) started with
the conversion of diethyl-4-oxopimelate (1) into para-tosyl-
hydrazone 2. Heating the anion of 2 in the presence of C60 in
1,2-ortho-dichlorobenzene (ODCB) at 1008C[11] gave fulle-
roid 3a, together with methanofullerene 3b, higher adducts,
and C60, through the intermediate diazo compound and
diazoline adduct. The isomeric mixture 3a/3b was isolated
and photoisomerized quantitatively to the [6,6]-isomer 3b.
Hydrolysis of 3b yielded acid 4, which was fully characterized
despite its insolubility in all common solvents. Target meth-
anofullerene 8 was prepared using a one-pot procedure:
[14] H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994,
94, 2483 2547.
[15] This analysis does not exclude the possibility of inversion at the other
center. However, this event is highly unlikely based on mechanistic
details elucidated thus far. CCDC-174599 (29) contains the supple-
mentary crystallographic data for this paper. These data can be
(or from the Cambridge Crystallographic Data Centre, 12, Union
Road, Cambridge CB21EZ, UK; fax: (44)1223-336-033; or deposit
@ccdc.cam.ac.uk).
[16] Enantiopure (R)-26 was prepared by using AD-mix-b: H. Becker,
S. B. King, M. Taniguchi, K. P. M. Vanhessche, K. B. Sharpless, J. Org.
Chem. 1995, 60, 3940 3941.
[17] Chiral HPLC analysis was performed by using a Diacel Chiralpack
Column AD, hexane/2-propanol (85:15), 1.5 mLminÀ1
, 254 nm,
¬
[*] Prof. Dr. J. C. Hummelen, Dr. L. Sanchez, Dr. M. T. Rispens
8.72 min ((S)-27), 12.2 min ((R)-27).
Stratingh Institute and Materials Science Centre
University of Groningen
[18] Although carbamate-derived Burgess-type salts should be quite
stable, the corresponding amide-based compounds are unlikely to be
readily isolated; for efforts to use such reagents in synthesis, see:
ref. [7c] and H. Vorbruggen, K. Krolikiewicz, Tetrahedron 1994, 50,
6549 6558.
Nijenborgh 4, 9747 AG Groningen (The Netherlands)
Fax : (31)50-3634296
[**] These investigations were financially supported by the Dutch Minis-
tries of EZ, O&W, and VROM through the EET program
(EETK97115). We thank Prof. Bert Meijer and his co-workers for
sharing their know-how and open discussions.
[19] For representative examples, see: ref. [6b] and C. T. Brain, J. M. Paul,
Synlett 1999, 1642 1644.
[20] The chiral integrity of products that result from ring opening of the
chiral sulfamidate by water under acidic conditions followed by
neutralization with aqueous sodium bicarbonate has already been
verified on a substrate far more prone to racemization (see: ref. [9k]).
Supporting information for this article is available on the WWW under
838
¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002
1433-7851/02/4105-0838 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2002, 41, No. 5