organic compounds
Table 1
strength for amide±ester and amide±amide interactions.
Crystal structures of compounds with oxalamide units and
neighbouring ester or acid groups show both possibilities: (a)
`like-to-like' amide±amide hydrogen bonds (Klaska et al.,
1980; Yamaguchi et al., 1992; Bhattacharjee & Ammon, 1982)
and (b) `like-to-unlike' amide±acid (Coe et al., 1997; Karle &
Ranganathan, 1995) or amide±ester (Karle et al., 1994)
hydrogen bonds. The structure of the latter is similar to that
found in the title compound. However, it should be pointed
out that, in those cases, the `like-to-unlike' interactions would
be favoured by the steric hindrance of lateral groups
(compounds with aminoisobutyryl or leucyl residues) or the
capability to form additional hydrogen bonds between the
oxalamide carbonyl and the hydroxyl of the acid groups.
Two CÐHÁ Á ÁO interactions found in the crystal may also be
classi®ed as hydrogen bonds (Table 2). One of these interac-
tions involves the ester group, whereas the second one affects
the oxalamide unit.
Selected bond angles (ꢁ).
C1ÐO1ÐC2ÐC3
C4iÐC4ÐN1ÐC3
178.58 (17)
179.01 (14)
C4ÐN1ÐC3ÐC2
O1ÐC2ÐC3ÐN1
80.54 (19)
162.85 (14)
Symmetry code: (i) 2 x; y; 1 z.
Table 2
Hydrogen-bonding geometry (A, ).
ꢁ
Ê
DÐHÁ Á ÁA
DÐH
HÁ Á ÁA
DÁ Á ÁA
DÐHÁ Á ÁA
N1ÐH1NÁ Á ÁO2i
0.77 (2)
0.77 (2)
2.26 (2)
2.37 (2)
2.886 (2)
2.707 (2)
139 (2)
108 (2)
N1ÐH1NÁ Á ÁO3ii
Symmetry codes: (i)
3
2
1 1
x; y
;
2 2
z; (ii) 2 x; y; 1 z.
H atoms were found in difference Fourier maps. However, those
not linked to the amide N atoms were re®ned using constraints
Ê
(CÐH = 0.96±0.97 A).
Data collection: CAD-4 Software (Kiers, 1994); cell re®nement:
SETANG and LS in CAD-4 Software; data reduction: local program;
program(s) used to solve structure: SHELXS97 (Sheldrick, 1997);
program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997);
molecular graphics: ORTEPII (Johnson, 1976).
Experimental
A solution of glycine methyl ester hydrochloride (0.2 mol) and
triethylamine (0.4 mol) in chloroform (250 ml) was treated with a
solution of oxaloyl chloride (0.1 mol) in chloroform (150 ml), which
was added slowly while maintaining the temperature at 273 K. After
1.5 h at room temperature, the solution was evaporated, yielding a
white powder which was recrystallized from 2-propanol (yield 47%,
m.p. 434 K). Colourless prismatic crystals were obtained by vapour
diffusion (293 K) of a 46:54 (v/v) chloroform/carbon tetrachloride
mixture, as precipitant, into a 56:44 (v/v) chloroform/carbon tetra-
chloride solution (concentration 2.6 mg ml 1).
This research was supported through CICYT grant
MAT2000/0995. The authors are grateful to Dr Campos for
help with the data collection.
Supplementary data for this paper are available from the IUCr electronic
archives (Reference: JZ1454). Services for accessing these data are
described at the back of the journal.
References
Crystal data
Â
Aleman, C., Navas, J. J. & MunÄoz-Guerra, S. (1995). J. Phys. Chem. 99, 17653±
17661.
3
C8H12N2O6
Mr = 232.20
Monoclinic, P21/n
Dx = 1.403 Mg m
Cu Kꢀ radiation
Cell parameters from 25
re¯ections
Bhattacharjee, S. K. & Ammon, H. L. (1982). Acta Cryst. B38, 2503±2505.
Coe, S., Kane, J. J., Nguten, T. L., Toledo, L. M., Wininger, E., Fowler, F. W. &
Lauher, J. W. (1997). J. Am. Chem. Soc. 119, 86±93.
Crick, F. H. C. & Rich, A. (1955). Nature (London), 176, 780±781.
Gaymans, R. J., Venkatraman, V. S. & Schuijer, J. (1984). J. Polym. Sci. Polym.
Chem. Ed. 22, 1373±1382.
Ê
a = 10.4122 (11) A
ꢂ = 10.0±28.5ꢁ
ꢃ = 1.05 mm
T = 293 (2) K
Ê
b = 4.7567 (8) A
1
Ê
c = 11.6778 (16) A
ꢁ = 108.168 (10)ꢁ
3
Ê
V = 549.54 (13) A
Z = 2
Prism, colourless
0.24 Â 0.14 Â 0.12 mm
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National
Laboratory, Tennessee, USA.
Karle, I. & Ranganathan, D. (1995). Biopolymers, 36, 323±331.
Karle, I., Ranganathan, D., Shah, K. & Vaish, N. K. (1994). Int. J. Pept. Protein
Res. 43, 160±165.
Kiers, C. (1994). CAD-4 Software. UNIX Version. Enraf±Nonius, Delft, The
Netherlands.
Klaska, K. H., Jarchow, O., Scham, W., Widjaja, H., Voss, J. & Schmalle, H. W.
(1980). J. Chem. Res. 104, 1643±1700.
Momenteua, M., Scheidt, W. R., Eigenbrot, C. W. & Reed, C. A. (1988). J. Am.
Chem. Soc. 110, 1207±1215.
Data collection
Enraf±Nonius CAD-4 diffrac-
tometer
!/2ꢂ scans
999 measured re¯ections
999 independent re¯ections
880 re¯ections with I > 2ꢄ(I)
ꢂmax = 67.9ꢁ
h = 12 ! 11
k = 0 ! 5
l = 0 ! 14
3 standard re¯ections
frequency: 120 min
intensity decay: none
Â
Â
Â
Paredes, N., Rodrõguez-Galan, A. & Puiggalõ, J. (1998). J. Polym. Sci. Polym.
Re®nement
Chem. Ed. 36, 1271±1282.
Shalaby, S. W., Pearce, E. M., Fredericks, R. J. & Turi, E. A. (1973). J. Polym.
Sci. Polym. Phys. Ed. 11, 1±14.
È
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Gott-
ingen, Germany.
Tirrell, D. & Vogl, O. (1977). J. Polym. Sci. Polym. Chem. Ed. 15, 1889±1903.
Re®nement on F2
R[F2 > 2ꢄ(F2)] = 0.057
wR(F2) = 0.155
S = 1.10
999 re¯ections
83 parameters
w = 1/[ꢄ2(Fo2) + (0.1062P)2
+ 0.1100P]
where P = (Fo2 + 2Fc2)/3
(Á/ꢄ)max = 0.015
3
Ê
Áꢅmax = 0.34 e A
3
Ê
0.26 e A
   Â
Urpõ, L., Rodrõguez-Galan, A. & Puiggalõ, J. (1998). Macromol. Chem. Phys.
Áꢅmin
=
199, 1167±1173.
Yamaguchi, K., Matsumura, G., Haga, N. & Shudo, K. (1992). Acta Cryst. C48,
558±559.
H atoms treated by a mixture of
independent and constrained
re®nement
ꢀ
Acta Cryst. (2001). C57, 932±933
Elaine Armelin et al. C8H12N2O6 933