O.A. Filippov et al. / Journal of Molecular Structure 790 (2006) 114–121
121
Acknowledgements
CN–
SCN–
BH3CN–
BH4–
This work was supported by the Russian Foundation for
Basic Research (No. 04-03-32456) and the Fundamental
Research Program of the Presidium of RAS.
B12H11SCN–
BH3CN–
CH3CN
2–
B12H11SCN–
B10H10
2–
References
B12H12
Et3NBH3
P(OEt)3BH3
[1] L.M. Epstein, N.V. Belkova, E.S. Shubina, in: M. Peruzzini, R. Poli
(Eds.), Recent Advances in Hydride Chemistry, Elsevier, Amsterdam,
2001, pp. 391–418; L.M. Epstein, E.S. Shubina, Coord. Chem. Rev., 231
(2002) 165; N.V. Belkova, E.S. Shubina, L.M. Epstein, Acc. Chem. Res.,
38 (2005) 624.
0,41 0,53 0,54 0,61 0,75 0,78 0,80 1,11 1,25 1,42 1,67 2,00
Fig. 9. Basicity factors (Ej) for boron hydrides and related organic bases.
[2] R. Custelcean, J.E. Jackson, Chem. Rev. 101 (2001) 1963; W. Grochala,
P.P. Edwards, Chem. Rev. 104 (2004) 1283.
values reported up to date for the other neutral and anionic
boron hydrides (Fig. 9), which vary from 0.62 to 1.25.
We can also consider the relative decrease of the basicity of
classical HB sites in the pairs BH3CNK/CN (EjZ1.42/2.0) and
[B12H11SCN]2K/SCNK (EjZ0.54/1.67). Thus, the decrease of
proton accepting ability of CN group in [BH3CN]K in
comparison with CNK anion is greater than that of SCN in
[B12H11SCN]2K (1.50 and 1.41 times, respectively) showing
that the electronic effect of BH3 group is less than that of the
boron cage.
[3] T.B. Richardson, S. de Gala, R.H. Crabtree, P.E.M. Siegbahn, J. Am
Chem. Soc. 117 (1995) 12875; R.H. Crabtree, P.E.M. Siegbahn,
O. Eisenstein, A.L. Rheingold, T.F. Koetzle, Acc. Chem. Res. 29
(1996) 348.
[4] E.S. Shubina, E.V. Bakhmutova, L.N. Saitkulova, L.M. Epstein,
Mendeleev Commun.
7 (1997) 83; L.M. Epstein, E.S. Shubina,
E.V. Bakhmutova, L.N. Saitkulova, V.I. Bakhmutov, N.P. Gambaryan,
A.L. Chistyakov, I.V. Stankevich, Inorg. Chem. 37 (1998) 3013;
E.S. Shubina, N.V. Belkova, E.V. Bakhmutova, L.N. Saitkulova,
A.V. Ionidis, L.M. Epstein, Russ Chem. Bull. 47 (1998) 817.
[5] I. Alkorta, J. Elguero, O. Mo, M. Vanez, J. Del Bene, J. Phys. Chem. A
106 (2002) 9325; S.J. Grabowski, W.A. Sokalski, J. Leszczynski, J. Phys.
Chem.
A 108 (2004) 5823; S.J. Grabowski, W.A. Sokalski,
J. Leszczynski, J. Phys. Chem. A 109 (2005) 4331.
[6] E.S. Shubina, E.V. Bakhmutova, A.M. Filin, I.B. Sivaev,
L.N. Teplitskaya, A.L. Chistyakov, I.V. Stankevich, V.I. Bakhmutov,
V.I. Bregadze, L.M. Epstein, J. Organomet. Chem. 657 (2002) 155–162.
[7] N.V. Belkova, O.A. Filippov, A.M. Filin, L.N. Teplitskaya,
Yu.V. Shmyrova, V.V. Gavrilenko, L.M. Golubinskaya, V.I. Bregadze,
L.M. Epstein, E.S. Shubina, Eur J. Inorg. Chem. 17 (2004) 3453.
[8] O.A. Filippov, A.M. Filin, L.N. Teplitskaya, N.V. Belkova,
Yu.V. Shmyrova, I.B. Sivaev, V.I. Bregadze, L.M. Epstein,
E.S. Shubina, Main Group Hydrides 4 (2005) 1.
4. Conclusions
The cyanoborohydride BH3CNK, possessing two HB sites:
the hydride hydrogen and the nitrogen lone pair, appeared to be
very convenient model for the investigation of the competition
between non-classical and classical sites of hydrogen bonding.
The combination of the IR spectroscopy and DFT calculations
allowed elucidating many aspects of this problem. The
assignment of all characteristic stretching vibration bands in
the IR spectra was made in conjunction with frequency
calculations. The formation of HB complexes of different types
was shown in dependence on the acid-base concentration ratio.
The thermodynamic characteristics and proton accepting
ability of the two sites were determined. Classical H-bonds
are stronger and more stable; therefore the equilibrium between
free anion and the HB complexes of two types shifts to the right
on cooling (200–290 K) mainly due to the increase of the
classical HB complexes content. The coexistence of the
classical and DHB bonds in one hydride molecule was
established for the first time. Structural and electronic changes
in the interacting molecules upon HB formation were studied
theoretically. The elongations of OH and BH bonds as well as
the small contraction of CN bond found are in agreement with
previous studies of parent anions and the present experimental
data. The strong electronic effects of the CN ligand and the
boron framework on proton accepting properties of each other
are demonstrated.
[9] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R.
Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C.
Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain,
O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C.
Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala,
Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B.
Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J.
Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L.
Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople,
GAUSSIAN 98, Revision A.9, Gaussian, Inc., Pittsburgh PA, 1998.
[10] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[11] L.M. Epstein, L.N. Saitkulova, E.S. Shubina, J. Mol. Struct. 270 (1992)
325.
[12] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon,
J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus,
M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14 (1993) 1347.
[13] P. Bacelon, J. de Lose, C. Corset, J. Solution Chem. 12 (1983) 13;
P.W. Schultz, G.E. Leroi, A.I. Popov, J. Am. Chem. Soc. 118 (1996)
10617.
[14] A.V. Iogansen, Teor. Experim. Khim., 7314; A.V. Iogansen, The
Hydrogen Bond, Nauka, Moscow, 1981. p. 134; A.V. Iogansen, Spectro-
chim. Acta A, 551585.