10.1002/anie.201710337
Angewandte Chemie International Edition
COMMUNICATION
[9] (a) M. Sajid, L.-M. Elmer, C. Rosorius, C. G. Daniliuc, S. Grimme,
G. Kehr, G. Erker, Angew. Chem. Int. Ed. 2013, 52, 1-5; (b) R.
Dobrovetsky, D. W. Stephan, J. Am. Chem. Soc. 2013, 135, 4974-
4977.
[10] M. Sajid, A. Stute, A. J. P. Cardenas, B. J. Culotta, J. A. M.
Hepperle, T. H. Warren, B. Schirmer, S. Grimme, A. Studer, C. G.
Daniliuc, R. Frohlich, J. L. Petersen, G. Kehr, G. Erker, J. Am.
Chem. Soc. 2012, 134, 10156-10168.
[11] (a) D. W. Stephan, G. Erker, Chem. Sci. 2014, 5, 2625-2641; (b)
K. Y. Ye, M. Bursch, Z. W. Qu, C. G. Daniliuc, S. Grimme, G.
Kehr, G. Erker, Chem. Commun. 2017, 53, 633-635.
[12] L. E. Longobardi, V. Wolter, D. W. Stephan, Angew. Chem. Int.
Ed. 2015, 54, 809-812.
[13] D. W. Stephan, Science 2016, 354, aaf7229.
[14] J. B. Geri, J. P. Shanahan, N. K. Szymczak, J. Am. Chem. Soc.
2017, 139, 5952-5956.
[15] A. Simonneau, R. Turrel, L. Vendier, M. Etienne, Angew. Chem.
Int. Ed. 2017, 56, 12268 -12272.
[16] K. C. Janda, L. S. Bernstein, J. M. Steed, S. E. Novick, W.
Klemperer, J. Am. Chem. Soc. 1978, 100, 8074.
in B(C6F5)3. Similarly, the bond order is computed to be 0.64
typical for B-C single bonds.
Computations also show that free carbene, free borane
and N2 are only 10.0 kcal/mol below the TS. However, in the
present system formation of the carbene-borane adduct is the
more exergonic reaction pathway. Nonetheless, this suggests
that frustration of the carbene-borane interaction could
provide an energetically favourable reaction pathway to the
TS ultimately affording an analog of
FLP approach to N2 capture.
5 and thus unveiling an
In conclusion, we have reported the 1,1-hydroboration of
Ph2CN2 with HB(C6F5)2 to give , which proceeds via a
concerted mechanism. In addition, reactions of Ph2CNNH2
with HB(C6F5)2 or B(C6F5)3 provide alternative routes to , as
well as a related salt. The isolation of the first diazomethane-
borane adduct, , is also reported. The isolation of this latter
1
1
5
species raises the possibility that judicious choice of a Lewis
acid and base could provide an avenue to metal-free capture
of N2. It is this ambitious objective that is the target of current
efforts.
[17] R. Appel, R. Schöllhorn, Angew. Chem. Int . Ed. 1964, 3, 805.
[18] N. Holzmann, D. Dange, C. Jones, G. Frenking, Angew. Chem.
Int . Ed. 2013, 52, 3004-3008.
[19] T. Itoh, Y. Nakata, K. Hirai, H. Tomioka, J. Am. Chem. Soc. 2006,
128, 957-967.
[20] R. C. Neu, C. Jiang, D. W. Stephan, Dalton Trans. 2013, 42, 726-
736.
[21](a) S. J. Geier, C. M. Vogels, S. A. Westcott, ACS Symp. Ser. 2016,
1236, 209-225; (b) J. R. Lawson, R. L. Melen, Inorg. Chem. 2017,
56, 8627-8643.
[22] (a) F. Meyer, M. U. Schmidt, P. Paetzold, Chem. Ber. 1995, 128,
947-951; (b) R. B. Brandon, C. Moore, E., A. Rheingold, L., J.
Figueroa, S., Chem. Commun. 2015, 51, 541-544; (c) D.-T. Yang,
S. K. Mellerup, X. Wang, J.-S. Lu, S. Wang, Angew. Chem., Int.
Ed. 2015, 54, 5498-5501; (d) Y.-G. Shi, N. Wang, T. Peng, S.
Wang, D.-T. Yang, K. Mellerup Soren, S. Wang, Org. Lett. 2016,
18, 1626-1629.
Keywords: diphenyldiazomethane • borane • 1,1-hydroboration
• adduct • nitrogen •
Acknowledgements
The authors gratefully acknowledge the financial support of
the NSERC of Canada. DWS is also grateful for the award of a
Canada Research Chair and an Einstein Visiting Fellowship at
TU Berlin. CT thanks Digital Speciality Chemicals for
scholarships. ARJ is grateful for the support of a Banting
Fellowship, while TCJ acknowledges the support of an NSERC
Postdoctoral Fellowship. SG thanks the DFG for financial
support in the framework of the Leibniz prize. We thank
Maotong Xu for insightful discussions and Jack Sheng for
invaluable help with NMR spectroscopic experiments.
[23] (a) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem.
Phys. Lett. 1989, 162, 165-169; (b) TURBOMOLE, version 7.1,
2017,
TURBOMOLE
GmbH,
Karlsruhe,
See
2, 73-78; (d) S. Grimme, C. Bannwarth, P. J. Shushkov, Chem.
Theory Comput. 2017, 13, 1989-2009; (e) S. Grimme, J. G.
Brandenburg, C. Bannwarth, A. J. Hansen, Chem. Phys. Chem.
2015, 143, 054107; (f) P. M. Zimmerman, J. Chem. Theory
Comput. 2013, 9, 3043-3050; (g) F. Weigend, R. Ahlrichs, Phys.
Chem. Chem. Phys. 2005, 7, 3297-3305; (h) S. Kozuch, D.
Gruzman, J. M. L. Martin, J. Phys. Chem. C, 2010, 114, 20801-
20808; (i) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem.
2011, 32, 1456-1465; (j) S. Grimme, J. Antony, S. Ehrlich, H.
Krieg, J. Chem. Phys. 2010, 132, 154104; (k) F. Eckert, A. Klamt,
AIChE J. 2002, 48, 369-385; (l) A. J. Klamt, Phys. Chem. 1995, 99,
2224-2235.
[1] (a) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400-
6441; (b) D. W. Stephan, J. Am. Chem. Soc. 2015, 137, 10018-
10032; (c) D. W. Stephan, Acc. Chem. Res. 2015, 48, 306-316; (d)
D. W. Stephan, G. Erker, Top. Curr. Chem. 2013, 332, 1-311; (e)
D. W. Stephan, G. Erker, Top. Curr. Chem. 2013, 334, 1-345; (f)
D. W. Stephan, Org. Biomol. Chem. 2012, 10, 5740-5746; (g) D.
W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 46-76.
[2] G. C. Welch, R. R. S. Juan, J. D. Masuda, D. W. Stephan, Science
2006, 314, 1124-1126.
[3] J. S. J. McCahill, G. C. Welch, D. W. Stephan, Angew. Chem. Int.
Ed. 2007, 46, 4968-4971.
[4] (a) M. A. Dureen, C. C. Brown, D. W. Stephan, Organometallics
2010, 29, 6594-6607; (b) M. A. Dureen, D. W. Stephan, J. Am.
Chem. Soc. 2009, 131, 8396-8398.
[5] M. A. Dureen, G. C. Welch, T. M. Gilbert, D. W. Stephan, Inorg.
Chem. 2009, 48, 9910-9917.
[6] (a) E. Otten, R. C. Neu, D. W. Stephan, J. Am. Chem. Soc. 2009,
131, 9918-9919; (b) R. C. Neu, E. Otten, D. W. Stephan, Angew.
Chem., Int. Ed. 2009, 48, 9709-9712.
[7] J. G. M. Morton, M. A. Dureen, D. W. Stephan, Chem. Commun.
2010, 46, 8947-8949.
[8] (a) J. J. Chi, T. C. Johnstone, D. Voicu, P. Mehlmann, F. Dielmann,
E. Kumacheva, D. W. Stephan, Chem. Sci. 2017, 8, 3270-3275; (b)
J. Chen, L. Falivene, L. Caporaso, L. Cavallo, E. Y. Chen, J. Am.
Chem. Soc. 2016, 138, 5321-5333.
This article is protected by copyright. All rights reserved.