Nanospray Infusion Experiments. Jungjoo Yoon and Pr Edward
I. Solomon for preliminary resonance Raman studies.
Notes and references
1
2
S. Ferguson-Miller and G. T. Babcock, Chem. Rev., 1996, 96, 2889.
(a) D. A. Proshlyakov, M. A. Pressler and G. T. Babcock, Proc. Natl.
Acad. Sci. USA, 1998, 95, 8020; (b) F. MacMillan, A. Kant, J. Behr,
T. Prisner and H. Michel, Biochemistry, 1999, 39, 9179; (c)
D. A. Proshlyakov, M. A. Pressler, C. DeMaso, J. F. Leykam,
D. L. DeWitt and G. T. Babcock, Science, 2000, 290, 1588.
3
(a) J. P. Collman, C. J. Sunderland and R. Boulatov, Inorg. Chem., 2002,
41, 2282; (b) R. Boulatov, J. P. Collman, I. M. Shiryaeva and
C. J. Sunderland, J. Am. Chem. Soc., 2002, 124, 11923; (c)
J. P. Collman, C. J. Sunderland, K. Berg, M. A. Vance and
E. I. Solomon, J. Am. Chem. Soc., 2003, 125, 6648; (d) J. P. Collman,
K. E. Berg, C. J. Sunderland, A. Aukauloo, M. A. Vance and
E. I. Solomon, Inorg. Chem., 2002, 41, 6583; (e) Compound 1 is best
described as a heme–superoxide complex in which the distal Cu does not
participate in covalent bonding to the coordinated oxygen, and it is
reasonably stable at room temperature. As such it is a uniquely stable
analog of the initial heme-bound dioxygen intermediate of CcO. This
III
I
Fig. 5 UV-Vis absorption of Fe –superoxide–Cu (1) before reaction
with phenol 2a (dotted line) and after (dark line). Inset: magnification of
the Q bands.
N
is unlike other CcO and other electron rich Cu(L ) complexes, where
3f–j
Cu–dioxygen complexes are typical. The Cu does not directly react
with oxygen: the Zn–CuMP complex appears to be air stable and low
temperature (250 uC, 5% MeCN–THF) NMR spectra are unchanged
2 2
upon exchange of a N head gas with 1 atm O ; (f) J.-G. Liu, Y. Naruta,
F. Tani, T. Chishiro and Y. Tachi, Chem. Commun., 2004, 120; (g)
J.-G. Liu, Y. Naruta and F. Tani, Angew. Chem., Int. Ed., 2005, 44, 1836;
The intermolecular reaction between 1 and 2–H was also
monitored by UV-vis spectroscopy (Fig. 5) and analyzed in light of
3c
(
h) E. Kim, J. Shearer, S. Lu, P. Mo e¨ nne-Loccoz, M. E. Helton,
S. Kaderli, A. D. Zuberb u¨ hler and K. D. Karlin, J. Am. Chem. Soc.,
004, 126, 12716; (i) E. Kim, K. Kamaraj, B. Galliker, N. D. Rubie,
the absorption spectra of 1 and of an authentic phenoxyl radical
?
2
generated in situ.{ Of the four bands characteristic of phenoxyl
2
?
radical 2 (beside the absorption of the parent molecule 2–H at
P. Moenne-Loccoz, S. Kaderli, A. D. Zuberbuhler and K. D. Karlin,
Inorg. Chem., 2005, 44, 1238; (j) E. Kim, M. E. Helton, S. Lu, P. Moenne-
Loccoz, C. D. Incarvito, A. L. Rheingold, S. Kaderli, A. D. Zuberbuhler
and K. D. Karlin, Inorg. Chem., 2005, 44, 7014.
(a) M. Lucarini, V. Mugnaini, G. F. Pedulli and M. Guerra, J. Am.
Chem. Soc., 2003, 125, 8318; (b) J. T. Lai, Tetrahedron Lett., 2001, 42,
557; (c) E. M u¨ ller and K. Ley, Chem. Ber., 1955, 88, 601; (d)
F. G. Bordwell and X.-M. Zhang, J. Phys. Org. Chem., 1995, 8, 529;
(e) J. P. Collman, Z. Wang, M. Zhong and L. Zeng, J. Chem. Soc.,
Perkin Trans. 1, 2000, 1217; (f) J. A. Cappuccio, I. Ayala, G. I. Eliott,
I. Szundi, J. Lewis, J. P. Konopelski, B. A. Barry and O. Einarsdottir,
J. Am. Chem. Soc., 2002, 124, 1750.
5 M. R. A. Blomberg, P. E. M. Siegbahn, G. T. Babcock and
M. Wikstr o¨ m, J. Am. Chem. Soc., 2000, 122, 12848.
Handbook Chemistry and Physics, ed. R. C. Weast, CRC Press,
Cleaveland, Ohio, 1977, E-44.
7 J. E. Critchlow and H. B. Dunford, J. Biol. Med., 1972, 247, 3703.
8 (a) D.-H. Chin, A. L. Balch and G. N. La Mar, J. Am. Chem. Soc., 1980,
3
00 nm), only the most intense absorption band that gradually
3
21
21
appears at 339 nm (e = 3.8 6 10 M cm ) could be used to
correlate the UV-vis data with the kinetic data from EPR. The
absorptions at 388 nm and 405 nm were barely visible at the end of
the reaction as shoulders on the Soret band. The broad band
4
?
21
centered at 540 nm in 2 and typical of phenoxyl radicals was too
21
weak (e = 120 M cm ) to be distinguished from the porphyrin
Q bands. Moreover, significant shifts in the Q bands were
observed during the reaction.
III
I
This study demonstrates that 1, an iron –superoxo–copper
2
biomimetic model of the oxy intermediate observed in CcO, reacts
6
with an exogeneous soluble Tyr244 mimic 2 to generate a phenoxyl
2
radical 2 as occurs in the enzyme. However unlike the tyrosyl
?
radical in the enzyme, the phenoxyl radical formed (2 ) is well
?
1
02, 1446; (b) A. L. Balch, Y.-W. Chan, R.-J. Cheng, G. N. La Mar,
L. Latos-Grazynski and M. W. Renner, J. Am. Chem. Soc., 1984, 106,
779; (c) A. L. Balch, G. N. La Mar, L. Latos-Grazynski, M. W. Renner
resolved and does not couple nor interfere with the neighboring
II
Cu species. Strong evidence is provided regarding the formation
7
of an hydroperoxo-type intermediate 5 and of a heme ferryloxo
product 4. Thorough mechanistic studies of this intermolecular
reaction and complete characterization of the ferryloxo species 4
and 7a (resonance Raman) are in progress and should pave the
way to future studies of a similar intramolecular reaction in more
and V. Thanabai, J. Am. Chem. Soc., 1985, 107, 3003; (d) J. T. Groves,
R. C. Haushalter, M. Nakamura, T. E. Nemo and B. J. Evans, J. Am.
Chem. Soc., 1981, 103, 2884; (e) J. P. Collman, L. Zeng, H. J. H. Wang,
A. Lei and J. I. Brauman, Eur. J. Org. Chem., 2006, 2707; (f) D.-H. Chin,
G. N. La Mar and A. L. Balch, J. Am. Chem. Soc., 1980, 102, 5945; (g)
R. A. Ghiladi, R. M. Kretzer, I. Guzei, A. L. Rheingold, Y.-M. Neuhold,
K. R. Hatwell, A. D. Zuberbuller and K. D. Karlin, Inorg. Chem., 2001,
9
advanced CcO models having a covalently attached phenol.
4
0, 5754.
(a) J. P. Collman, R. A. Decr e´ au and S. Costanzo, Org. Lett., 2004, 6,
033; (b) J. P. Collman, R. A. Decr e´ au and C. Zhang, J. Org. Chem.,
2004, 69, 3546.
RAD is thankful for a Lavoisier Fellowship. Fruitful discussion
with Neal K Devaraj and Dr Xavier Ottenwaelder. Dr Allis Chien
Head of the Stanford University Mass Spectrometry (SUMS) for
9
1
3
896 | Chem. Commun., 2006, 3894–3896
This journal is ß The Royal Society of Chemistry 2006