The Journal of Organic Chemistry
Page 24 of 26
1
2
3
4
Research of Tunisia. We acknowledge use of the UMS2008-IBSLor Biophysics and Structural
5
6
Biology core facility at Université de Lorraine for CD measurements.
7
8
9
1
Culf, A. S.; Ouellette, R. J. Solid-Phase Synthesis of N-Substituted Glycine Oligomers (alpha-Peptoids) and
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Derivatives. Molecules 2010, 15, 5282-5335.
Knight, A. S.; Zhou, E. Y.; Francis, M. B.; Zuckermann, R. N. Sequence Programmable Peptoid Polymers for
2
Diverse Materials Applications. Adv. Mater. 2015, 27, 5665-5691.
3
Gangloff, N.; Ulbricht, J.; Lorson, T.; Schlaad, H.; Luxenhofer, R. Peptoids and Polypeptoids at the Frontier of
Supra- and Macromolecular Engineering. Chem. Rev. 2016, 116, 1753-1802.
4 Zuckermann, R. N.; Kodadek, T. Peptoids as potential therapeutics. Curr. Opin. Mol. Ther. 2009, 11, 299-307.
5
Dohm, M. T.; Kapoor, R.; Barron, A. E. Peptoids: Bio-Inspired Polymers as Potential Pharmaceuticals. Curr.
Pharm. Des. 2011, 17, 2732-2747.
6 Horne, W. S. Peptide and peptoid foldamers in medicinal chemistry. Expert Opin. Drug Dis. 2011, 6, 1247-1262.
7 Maayan, G.; Ward, M. D.; Kirshenbaum, K. Metallopeptoids. Chem. Commun., 2009, 56-58.
8
Maayan, G.; Ward, M. D.; Kirshenbaum, K. Folded biomimetic oligomers for enantioselective catalysis. Proc.
Natl. Acad. Sci. USA 2009, 106, 13679-13684.
9
Zborovsky, L.; Tigger-Zaborov, H.; Maayan, G. Sequence and Structure of Peptoid Oligomers Can Tune the
Photoluminescence of an Embedded Ruthenium Dye. Chem. Eur. J. 2019, 25, 9098-9107.
10
Zuckermann, R. N.; Kerr, J. M.; Kent, S. B. H.; Moos, W. H. Efficient method for the preparation of peptoids
[oligo(N-substituted glycines)] by submonomer solid-phase synthesis. J. Am. Chem. Soc. 1992, 114, 10646-10647.
11
Miller, S. M.; Simon, R. J.; Ng, S.; Zuckermann, R. N.; Kerr, J. M.; Moos, W. H. Proteolytic Studies of
Homologous Peptide and N-Substituted Glycine Peptoid Oligomers. Bioorg. Med. Chem. Lett. 1994, 4, 2657-2662.
12 Miller, S. M.; Simon, R. J.; Ng, S.; Zuckermann, R. N.; Kerr, J. M.; Moos, W. H. Comparison of the Proteolytic
Susceptibilities of Homologous L-Amino-Acid, D-Amino-Acid, and N-Substituted Glycine Peptide and Peptoid
Oligomers. Drug Dev. Res. 1995, 35, 20-32.
13
Armand, P.; Kirshenbaum, K.; Goldsmith, R. A.; Farr-Jones, S.; Barron, A. E.; Truong, K. T. V.; Dill, K. A.;
Mierke, D. F.; Cohen, F. E.; Zuckermann, R. N.; Bradley, E. K. NMR determination of the major solution
conformation of a peptoid pentamer with chiral side chains. Proc. Natl. Acad. Sci. USA 1998, 95, 4309-4314.
14 Wu, C. W.; Kirshenbaum, K.; Sanborn, T. J.; Patch, J. A.; Huang, K.; Dill, K. A.; Zuckermann, R. N.; Barron, A.
E. Structural and spectroscopic studies of peptoid oligomers with -chiral aliphatic side chains. J. Am. Chem. Soc.
2003, 125, 13525-13530.
15
Stringer, J. R.; Crapster, J. A.; Guzei, I. A.; Blackwell, H. E. Extraordinarily Robust Polyproline Type I Peptoid
Helices Generated via the Incorporation of alpha-Chiral Aromatic N-1-Naphthylethyl Side Chains. J. Am. Chem.
Soc. 2011, 133 (39), 15559-15567.
16
Roy, O.; Dumonteil, G.; Faure, S.; Jouffret, L.; Kriznik, A.; Taillefumier, C. Homogeneous and Robust
Polyproline Type I Helices from Peptoids with Nonaromatic -Chiral Side Chains. J. Am. Chem. Soc. 2017, 139,
13533-13540.
17 Shah, N. H.; Butterfoss, G. L.; Nguyen, K.; Yoo, B.; Bonneau, R.; Rabenstein, D. L.; Kirshenbaum, K. Oligo(N-
aryl glycines): A New Twist on Structured Peptoids. J. Am. Chem. Soc. 2008, 130, 16622-16632.
18
Crapster, J. A.; Stringer, J. R.; Guzei, I. A.; Blackwell, H. E. Design and Conformational Analysis of Peptoids
Containing N-Hydroxy Amides Reveals a Unique Sheet-Like Secondary Structure. Biopolymers 2011, 96, 604-616.
19
(a) Shin, S. B.; Yoo, B.; Todaro, L. J.; Kirshenbaum, K. Cyclic Peptoids. J. Am. Chem. Soc. 2007, 129, 3218-
3225. (b) D'Amato, A.; Pierri, G.; Tedesco, C.; Della Sala, G.; Izzo, I.; Costabile, C.; De Riccardis, F. Reverse Turn
and Loop Secondary Structures in Stereodefined Cyclic Peptoid Scaffolds. J. Org. Chem. 2019, 84, 10911-10928.
(c) Huang, K.; Wu, C. W.; Sanborn, T. J.; Patch, J. A.; Kirshenbaum, K.; Zuckermann, R. N.; Barron, A. E.;
Radhakrishnan, I. A Threaded Loop Conformation Adopted by a Family of Peptoid Nonamers. J. Am. Chem. Soc.
2006, 128, 1733-1738.
20
Gorske, B. C.; Mumford, E. M.; Gerrity, C. G.; Ko, I. A Peptoid Square Helix via Synergistic Control of
Backbone Dihedral Angles. J. Am. Chem. Soc. 2017, 139, 8070-8073.
21
Crapster, J. A.; Guzei, I. A.; Blackwell, H. E. A Peptoid Ribbon Secondary Structure. Angew. Chem. Int. Ed.
2013, 52 (19), 5079-5084.
22
Gorske, B. C.; Mumford, E. M.; Conry, R. R. Tandem Incorporation of Enantiomeric Residues Engenders
Discrete Peptoid Structures. Org. Lett. 2016, 18, 2780-2783.
23 Sui, Q.; Borchardt, D.; Rabenstein, D. L. Kinetics and Equilibria of Cis/Trans Isomerization of Backbone Amide
Bonds in Peptoids. J. Am. Chem. Soc. 2007, 129, 12042-12048.
ACS Paragon Plus Environment