M.-X. Wang et al.
N 26.41. Recrystallization from acetonitrile gave single crystals suitable
for X-ray diffraction analysis.
Acknowledgements
1
Methylazacalix[8]pyridine 11: m.p. 117–1188C; H NMR (600 MHz,
The work was supported by funds from the National Natural Science
Foundation ofChina, the Ministry ofScience and Technology ofChina,
and the Chinese Academy ofSciences. We thank Pro ef ssor Yun-Dong
Wu of Beijing University for helpful discussions.
CD
2
Cl
2
): d = 7.43 (t, J = 7.8 Hz, 8H), 6.76 (d, J = 8.4 Hz, 16H). 3.52
1
3
(
s, 24H) ppm; C NMR (75 MHz, CDCl
3
): d
6.1 ppm; MS (MALDI-TOF): m/z: 848.8 [M+1] ; elemental analysis
16: C 67.90, H 5.70, N 26.40; found: C 67.66, H
.71, N 26.37. Slow evaporation ofsolvent rf om the solution of 11 in a
= 156.0, 139.0, 107.2,
+
3
calcd (%) for C48
48
H N
5
mixture ofhexane and ethyl acetate (6:1) gave X-ray quality single crys-
tals.
[1] C. D. Gutsche, B. Dhawan, K. H. No, R. Muthukrishnan, J. Am.
Chem. Soc. 1981, 103, 3782.
[2] For reviews, see: a) Calixarenes 2001 (Eds.: Z. Asfari, V. Bçhmer, J.
Harrowfield, J. Vicens, M. Saadioui), Kluwer, The Netherlands,
1
Linear pentamer 12: m.p. 72–738C; H NMR (300 MHz, CDCl
3
): d =
7
J
6
1
2
.30–7.39 (m, 5H), 6.73–6.81 (m, 6H), 6.52 (d, J = 7.9 Hz, 2H), 5.98 (d,
7.9 Hz, 2H), 4.47 (s, 2H), 3.60 (s, 6H), 3.56 (s, 6H), 2.90 (s,
2
001; b) C. D. Gutsche, Calixarenes Revisited, Royal Society of
=
1
3
Chemistry, Cambridge, 1998; c) Calixarenes in Action (Eds.: L. Man-
dolini, R. Ungaro), Imperial College Press, London, 2000; d) G. J.
Lumetta, R. D. Rogers, A. S. Gopalan, Calixarenes for Separation,
ACS, Washington, 2000; e) C. D. Gutsche, Calixarenes, Royal Soci-
ety ofChemistry, Cambridge, 1989.
H) ppm; C NMR (75 MHz, CDCl
3
): d = 158.9, 156.9, 156.5, 156.4,
56.3, 138.6, 137.6, 137.6, 106.2, 106.1, 105.9, 103.6, 98.4, 35.6, 35.6,
ꢀ1
9.2 ppm. IR (KBr): nˇ = 3285, 1599, 1562, 1408 cm ; HRMS (FT-ICR):
+
found 562.3141 [M+H] ; C31
Methylazacalix[2]arene[2]pyridine 13: m.p. 245–2468C;
300 MHz, CDCl ): d = 7.42 (t, J = 8.0 Hz, 2H), 7.05 (t, J = 7.8 Hz,
H), 6.74 (d, J = 7.9 Hz, 4H), 6.66 (s, 2H), 6.02 (d, J = 8.0 Hz, 4H),
36
H N11 requires 562.3149.
1
H NMR
[
3] For recent examples, see: a) R. Zadmard, T. Schrader, J. Am. Chem.
Soc. 2005, 127, 904; b) U. Darbost, M.-N. Rager, S. Petit, I. Jabin, O.
Reinaud, J. Am. Chem. Soc. 2005, 127, 8517; c) O. Seneque, M.-N.
Rager, M. Giorgi, T. Prange, A. Tomas, O. Reinaud, J. Am. Chem.
Soc. 2005, 127, 14833; d) C. Gaeta, M. O. Vysotsky, A. Bogdan, V.
Bçhmer, J. Am. Chem. Soc. 2005, 127, 13136; e) B.-T. Zhao, M.-J.
Blesa, N. Mercier, F. Le Derf, M. Salle, J. Org. Chem. 2005, 70,
6254; f) H. Al-Saraierh, D. O. Miller, P. E. Geroghiou, J. Org. Chem.
(
3
2
3
1
2
1
1
3
.18 (s, 12H) ppm; C NMR (75 MHz, CDCl
26.6, 128.9, 138.8, 148.9, 158.3 ppm; MS (EI): m/z: 422 [M] (100%),
3
): d = 38.9, 95.0, 124.9,
+
11 (24); elemental analysis calcd (%) for C26
9.89; found: C 74.25, H 6.30, N 19.85.
H
26
N
6
: C 73.91, H 6.20, N
1
Methylazacalix[4]arene[4]pyridine 14: m.p. 209–2108C;
H NMR
2
005, 70, 8273; g) E.-H. Ryu, Y. Zhao, Org. Lett. 2005, 7, 1035;
h) S. K. Kim, J. H. Bok, R. A. Bartsch, J. Y. Lee, J. S. Kim, Org. Lett.
005, 7, 4839.
(
(
(
300 MHz, CDCl
m, 12H), 5.97 (d, J
75 MHz, CDCl ): d
3
): d = 7.46 (t, J = 8.0 Hz, 4H), 7.35 (s, 4H), 7.07–7.13
1
3
=
8.0 Hz, 8H), 3.49 (s, 24H) ppm; C NMR
2
3
= 38.9, 98.8, 122.7, 125.2, 131.1, 138.8, 148.6,
[
[
4] For a useful overview of heteroatom-bridged calixarenes, see: B.
Kçnig, M. H. Fonseca, Eur. J. Inorg. Chem. 2000, 2303.
1
58.2 ppm; MS (MALDI-TOF): m/z: 845.8 [M+1]; elemental analysis
calcd (%) for C52 12: C 73.91, H 6.20, N 19.89; found: C 74.16, H
.30, N 20.07.
52
H N
5] a) P. A. Gale, J. L. Sessler, V. Krꢂl, Chem. Commun. 1998, 1; b) S.
Depraetere, M. Smet, W. Dehaen, Angew. Chem. 1999, 111, 3556;
Angew. Chem. Int. Ed. 1999, 38, 3359; c) B. Turner, A. Shterenberg,
M. Kapon, K. Suwinska, Y. Eichen, Chem. Commun. 2001, 13; d) C.
Bucher, R. S. Zimmerman, V. Lynch, V. Krꢂl, J. L. Sessler, J. Am.
Chem. Soc. 2001, 123, 2099; e) G. Cafeo, F. H. Kohnke, G. L. La
Torre, M. F. Parisi, R. P. Nascone, A. J. P. White, D. J. Williams,
Chem. Eur. J. 2002, 8, 3148; f) C. Floriani, Chem. Commun. 1996,
1257; g) P. A. Gale, P. Anzenbacher, J. L. Sessler, Coord. Chem. Rev.
2001, 222, 57.
6
Preparation of X-ray quality single crystals: Single crystals ofmonopro-
tonated 10 were obtained by diffusing diethyl ether vapor into a solution
of 10 (10 mg) and Fe
A
C
H
T
R
E
U
N
G
(ClO
4
)
3
(10 mg) in DMF (2 mL) at 15–208C, while
single crystals of 10·2HClO
4
were cultivated simply by evaporating the
4
solvent from a clear solution of 10 in aqueous HClO solution (2m) at
room temperature.
3 4
BiCl (10 mg) and aqueous HClO solution (1m, 15 mL) were added con-
secutively to a solution of 10 (10 mg) in acetonitrile (10 mL). The mixture
was warmed for 5 min and was then filtered. Slow evaporation of solvent
from the clear solution at 208C afforded single crystals of triprotonated
[6] a) V. Krꢂl, P. A. Gale, P. Anzenbacher, K. Jursikovꢂ, V. Lynch, J. L.
Sessler, Chem. Commun. 1998, 9; b) J. L. Sessler, W.-S. Cho, V.
Lynch, V. Krꢂl, Chem. Eur. J. 2002, 8, 1134; c) G. R. Newkome, Y. J.
Joo, F. R. Fronczek, J. Chem. Soc. Chem. Commun. 1987, 854.
1
0.
For the preparation ofmethylazacalix[4]pyridine complex with oxalic
acid, 10 (20 mg) was first dissolved in dichloromethane (5 mL). Titanium
oxalate (20 mg) and methanol (15 mL) were added, and the resulting
mixture was warmed for 5 min and filtered. Hexane (10 mL) was then
added to the filtrate to give a clear solution. Slow evaporation of the sol-
[
7] a) R. G. Ackman, W. H. Brown, G. F. Wright, J. Org. Chem. 1955,
2
0, 1147; b) W. H. Brown, H. Sawatsky, Can. J. Chem. 1956, 34,
1
147; c) R. E. Beals, W. H. Brown, J. Org. Chem. 1956, 21, 447;
d) M. de Sousa Healy, A. J. Rest, J. Chem. Soc. Chem. Commun.
981, 149; e) F. H. Kohnke, G. L. La Torre, M. F. Parisi, Tetrahedron
1
vent at 208C gave single crystals of 10·2HO
Single crystals of[Cu 10](PF ·0.5CH Cl were obtained by treatment of
0 (25 mg, 0.06 mmol) with [Cu(NCCH ]PF (22 mg, 0.06 mmol) in a
2 2 2
CCO H·H O.
Lett. 1996, 37, 4593; f) P. Fonte, F. H. Kohnke, M. F. Parisi, Tetrahe-
dron Lett. 1996, 37, 6201; g) P. Fonte, F. H. Kohnke, M. F. Parisi, Tet-
rahedron Lett. 1996, 37, 6205; h) J. Guillard, O. Meth-Cohn, C. W.
Rees, A. J. P. White, D. J. Williams, Chem. Commun. 2002, 232; i) M.
Ahmed, O. Meth-Cohn, J. Chem. Soc. C 1971, 2104; j) E. Vogel, P.
Rçhrig, M. Socken, B. Knipp, A. Herrmann, M. Pohl, H. Schmick-
ler, J. Lex, Angew. Chem. 1989, 101, 1683; Angew. Chem. Int. Ed.
Engl. 1989, 28, 1651; k) E. Vogel, M. Pohl, A. Herrmann, T. Wiss, C.
Kçnig, J. Lex, M. Gross, J. P. Gisselbrecht, Angew. Chem. 1996, 108,
A
C
H
T
R
E
U
N
G
6
)
2
2
2
1
A
H
R
U
G
3
)
4
6
mixture ofdichloromethane and methanol. A tf er having been heated at
reflux overnight, the solution was cooled down to room temperature.
Slow evaporation of solvent at room temperature afforded red crystals.
To cultivate single crystals ofmonoprotonated methylazacalix[2]arene[2]-
pyridine [H·13]ClO
4 2 2
·CH Cl , 13 (10 mg) was first dissolved in dichloro-
methane (5 mL). After addition of methanol (5 mL) and aqueous HClO
solution (1m, 5 mL), n-hexane (10 mL) was added. Slow evaporation of
solvent at 8–108C gave crystals suitable for X-ray diffraction analysis.
4
1
677; Angew. Chem. Int. Ed. Engl. 1996, 35, 1520; l) E. E. Boros,
C. W. Andrews, A. O. Davis, J. Org. Chem. 1996, 61, 2553; m) P. R.
Dave, G. Doyle, T. Axenrod, H. Yazdekhasti, J. Org. Chem. 1995,
Single crystals ofdiprotonated methylazacalix[2]arene[2]pyridine were
obtained from the evaporation of solvent from a solution of 13 (10 mg)
in HI (40%, 1 mL), methanol (2 mL), and n-hexane (10 mL) at 8–108C.
6
0, 6946; n) S. Kumar, G. Hundal, D. Paul, M. S. Hundal, H. Singh,
J. Org. Chem. 1999, 64, 7717; o) D. St.C. Black, D. C. Craig, N.
Kumar, Tetrahedron Lett. 1995, 36, 8075; p) D. St.C. Black, D. C.
Craig, R. Rezaie, Chem. Commun. 2002, 810; q) J. L. Sessler, W.-S.
Cho, V. Lynch, V. Krꢂl, Chem. Eur. J. 2002, 8, 1134; r) G. Cafeo,
F. H. Kohnke, G. L. La Torre, A. J. P. White, D. J. Williams, Angew.
Chem. 2000, 112, 1556; Angew. Chem. Int. Ed. 2000, 39, 1496; s) G.
CCDC-600392, CCDC-600397, CCDC-600394, CCDC-600393, CCDC-
6
00395, CCDC-600396, CCDC-600391, and CCDC-601458 contain the
supplementary crystallographic data for this paper. These data can be ob-
tained free of charge via www.ccdc.cam.ac.uk/data_request/cif.
9274
ꢁ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2006, 12, 9262 – 9275