884 J. Chin. Chem. Soc., Vol. 55, No. 4, 2008
Issa et al.
8. Cimerman, Z.; Miljanic, S.; Antolic, J. Spectr. Lett. 1999,
33, 181.
imental value (362 nm).
b. The p®p* transition within the C=N group gives
two bands at 306.9 and 329.1 nm with high coefficients on
N7, C8, C14 and O15 atoms. The experimental wavelengths
are equal to 306 and 334 nm, respectively, which is good
evidence for the proposed keto-enol tautomerism (Scheme
III).
9. Issa, R.-M.; Khedr, A.-M.; Rizk, H.-F. Spectrochimica Acta
A, 2005, 62, 621.
10. Saw, H.-D. J. Am. Chem. Soc. 1967, 101, 154.
11. Melhuish, W.-H. J. Phys. Chem. 1961, 65, 229.
12. Katritzky, A.-R. et al., J. Chem. Soc. 1959, 2051; 3607.
13. Breigleb, G.; Delle, H. Z. Electrochem. (Ber. Bausengesell.
Physiki Chem.) 1960, 64, 347; Z. Physiki Chem. (Frankfurt)
1960, 24, 359.
c. The third electronic transition is a p-p*(Ar) transi-
tion with greater coefficients on C1, C3, C4, and N6 atoms
within 252 and 269.7 nm where the experimental values are
255 and 270 nm, respectively.
14. Bruyneel, W.; Charette, T.-J.; De Hoffman, E. J. Am. Chem.
Soc. 1966, 88, 3808.
15. Masten, F.-A. J. Chem. Phys. 1958, 24, 602.
16. Becker, R.-S.; Wentworth, W.-F. J. Am. Chem. Soc. 1962,
84, 4263; 1963, 85, 2210.
d. The fourth type is p-p*(Ar) transition at 214.8 and
225 nm which could be described by an electron excitation
from the levels at 15.70624 and 15.45083 eV, significantly,
characterized by coefficients of C10, C12, C13, C14 and C14
atoms to the LUMO level with a complete p* character. The
experimental wavelengths are 214 and 231 nm, respec-
tively.
17. Wheast, C. D. Hand Book of Chemistry and Physics, 5th ed.;
The Chemical Rubber Company: Ohio, 1969.
18. Reisey, A.; Leyshon, L.-J. Saundevs, D.; Mijavic, M.-V.,
Bright, A.; Bogie, J. J. Am. Chem. Soc. 1972, 94, 2414.
19. Gati, L.; Szalay, L. Acta Phys. Chem. 1959, 5, 87.
20. Suppan, P. J. Chem. Soc. 1968, 2, 3125.
21. Kosower, E.-M. J. Am. Chem. Soc. 1956, 78, 5700.
22. Reichardt, C.; Dimoorth, K. Chem. Forsch. 1986, 11, 1.
23. Kamlet, M.-J.; Taft, R.-W. J. Am. Chem. Soc. 1976, 98, 377.
24. Issa, R.-M. Egypt. J. Chem. 1971, 14, 133.
25. Issa, R.-M.; Maghrabi, J.-Y. Z. Phys. Chem. (Leipzig) 1975,
56, 1120.
ACKNOWLEDGMENT
The authors are grateful to Prof. Dr. Mohamed Khaled
Awad for his assistance in the molecular orbital calculation
carried out in this work.
26. Forster, T. Z. Elektochem. (Ber. Bunsengesell. Physik.
Chem.) 1950, 54, 43.
Received December 25, 2007.
27. Anderson, A.-B. J. Chem. Phys. 1975, 62, 1187.
28. Anderson, A.-B.; Grimes, R.-W.; Hong, S.-Y. J. Phys.
Chem. 1987, 91, 4245.
REFERENCES
1. (a) Calvin, M. Science 1974, 184, 375. (b) Cooper, S.-R.;
Calvin, M. Science 1974, 188, 376.
29. Abd El-Halim, S.-T.; Awad, M.-K. J. Phys. Chem. 1993, 97,
3160.
2. Maurer, R.-I.; Blover, P.-I.; Dilworth, J.-R.; Reynoh, C.-A.
J. Med. Chem. 2002, 45, 1420.
30. Awad, M.-K.; Shehata, A.; El-Dissouki, A. Trans. Met.
Chem. 1993, 20, 6.
3. Selbin, J. Coord. Chem. Rev. 1966, 1, 293.
4. Vasin, S.-V.; Cetralla, J.; Genogel, R.-A.; Bernal, J. Inorg.
Chem. 1990, 29, 885.
31. Awad, M.-K. Polym. Degrad. Stab. 1995, 49, 339.
32. Awad, M.-K.; Habeeb, M. J. Mol. Struct. 1996, 378, 103.
33. Awad, M.-K. J. Mol. Struct. (Theochem) 2000, 505, 185.
34. Awad, M.-K. Mahgoob, F.; El-iskandrani, M. J. Mol. Struct.
(Theochem) 2000, 531, 105.
5. Maki, M.; Hashimato, H. Bull. Chem. Soc. (Japan) 1952, 25,
411; 1954, 27, 602.
6. Papie, S.; Kaprivanae, N.; Grabarie, Z.; Paracosterman, D.
Dyes Pigments 1994, 25, 229.
35. Lotz, W. J. Opt. Soc. Am. 1970, 60, 206.
36. Clementi, I.; Raimondi, D.-L. J. Chem. Phys. 1963, 38,
2680.
7. Khedr, A.-M.; Gaber, M.; Issa, R.-M.; Erten, H. Dyes Pig-
ments 2005, 67, 117.