Medium-Sized Rings by Samarium Diiodide Induced Cyclizations
SHORT COMMUNICATION
tized products, see S.-C. Lin, F.-D. Yang, J.-S. Shiue, S.-M.
Yang, J.-M. Fang, J. Org. Chem. 1998, 63, 2909–2917.
For the formation of medium-sized carbocycles and heterocy-
cles by intramolecular samarium ketyl additions to alkene and
alkyne units, see a) H.-U. Reißig, F. A. Khan, R. Czerwonka,
C. U. Dinesh, A. L. Shaikh, R. Zimmer, Eur. J. Org. Chem.
2006, 4419–4428, and literature cited in this publication; b) A.
Hölemann, H.-U. Reißig, Synlett 2004, 2732–2735.
B. E. Evans, K. E. Rittle, M. G. Bock, R. M. DiPardo, R. M.
Freidinger, W. L. Whitter, G. F. Lundell, D. F. Veber, P. S. An-
derson, R. S. L. Chang, V. J. Lotti, D. J. Cerino, T. B. Chen,
P. J. Kling, K. A. Kunkel, J. P. Springer, J. Hirshfield, J. Med.
Chem. 1988, 31, 2235–2246.
a) M. Somei, F. Yamada, Nat. Prod. Prep. 2005, 22, 73–103;
b) J. A. Joule in Science of Synthesis (Houben-Weyl, Methods
of Molecular Transformation) (Ed.: E. J. Thomas), Georg Thie-
me, Stuttgart, 2000; vol. 10, pp. 361–652; c) J. Bonjoch, J.
Bosch, Alkaloids 1996, 48, 75–189; d) R. J. Sundberg, Indoles,
Academic Press, London, 1996; e) J. E. Saxton, The Chemistry
of Heterocyclic Compounds, Academic Press, New York, 1994;
vol. 25, part IV; f) H. Döpp, U. Döpp, U. Langer, B. Gerding
in Methoden der Organischen Chemie (Houben-Weyl), Georg
Thieme, Stuttgart, 1994, vol. E6b1, pp 546–848 and vol. E6b2;
g) D. J. Chadwick, R. A. Jones, R. J. Sundberg in Comprehen-
sive Heterocyclic Chemistry (Eds.: A. R. Katritzky, C. W. Rees),
Pergamon, Oxford, 1984, vol. 4, pp. 155–376.
Compound 6: V. N. Odinokov, O. S. Kukovinets, V. G. Kas-
radze, E. Y. Tsyglintseva, E. P. Serebryakov, G. A. Tolstikov,
Chem. Nat. Compd. 1992, 28, 106–109; compound 7: G. A.
Molander, J. A. McKie, J. Org. Chem. 1994, 59, 3186–3192;
compound 8: D. Becker, Z. Harel, M. Nagler, A. Gillon, J. Org.
Chem. 1982, 47, 3297–3306.
periments and by analogy considering our earlier ketyl cyc-
lization experiments with cyclohexanone derivatives.[19] For
the major diastereomer of 19, an X-ray analysis unequivo-
cally proved the constitution and configuration of this com-
pound.[20] The minor diastereomers of 18 and 19 very likely
have cis-configuration of the substituents at the two indole
carbons; however, these assignments have to be confirmed
by additional experiments.
[6]
[7]
[8]
Conclusions
In summary, we have demonstrated that the intramolecu-
lar samarium ketyl addition to suitable indole and pyrrole
acceptors generates seven- and eight-membered rings con-
taining these heterocycles. Yields are moderate to very good
and excellent diastereoselectivities are observed. Up to four
contiguous stereogenic centres can be established in a
stereoselective fashion. Extension to other substrates to
further investigate the scope and limitations of this ring
forming process, as well as application of this method to the
synthesis of natural products or analogues, are in progress.
[9]
Acknowledgments
[10]
[11]
[12]
H. Takikawa, K.-i. Shimbo, K. Mori, Liebigs Ann./Recueil
1997, 821–824.
H. Maehr, M. R. Uskokovic, Eur. J. Org. Chem. 2004, 1703–
1713.
Compound 1 is commercially available; compound 2 was ob-
tained by esterification from the corresponding commercially
available carboxylic acid: R. A. Cavallaro, L. Filocamo, A. Ga-
luppi, A. Galione, M. Brufani, A. A. Genazzani, J. Med.
Chem. 1999, 42, 2527–2534; compound 3 was prepared by
Michael-type α-alkylation of cyclohexanone with methyl acry-
late: L. Cotarca, P. Delogu, P. Maggioni, A. Nardelli, R. Bian-
chini, S. Sguassero, Synthesis 1997, 328–332.
Support of this work by the Alexander von Humboldt Stiftung (Re-
search Fellowship to V. B.), the Deutsche Forschungsgemeinschaft,
the Fonds der Chemischen Industrie and the Schering AG is most
gratefully acknowledged. We also thank Dr. S. Yekta for her help
during preparation of this manuscript.
[1] For selected recent reviews on samarium diiodide promoted
reactions, see a) D. J. Edmonds, D. Johnston, D. J. Procter,
Chem. Rev. 2004, 104, 3371–3404; b) M. Berndt, S. Gross, A.
Hölemann, H.-U. Reißig, Synlett 2004, 422–438; c) H. B. Ka-
gan, Tetrahedron 2003, 59, 10351–10372; d) G. A. Molander,
C. R. Harris, Tetrahedron 1998, 54, 3321–3354.
[2] S. Gross, H.-U. Reißig, Org. Lett. 2003, 5, 4305–4307.
[3] For our group’s work concerning intramolecular samarium ke-
tyl additions to aryl groups, see a) M. Berndt, I. Hlobilová,
H.-U. Reißig, Org. Lett. 2004, 6, 957–960; b) S. Gross, H.-U.
Reißig, Synlett 2002, 2027–2030; c) M. Berndt, H.-U. Reißig,
Synlett 2001, 1290–1292; d) E. Nandanan, C. U. Dinesh, H.-
U. Reißig, Tetrahedron 2000, 56, 4267–4277; e) C. U. Dinesh,
H.-U. Reißig, Angew. Chem. 1999, 111, 874–876; Angew. Chem.
Int. Ed. 1999, 38, 789–791.
[4] For related aryl carbonyl couplings, see a) H. Ohno, M. Oku-
mura, S. I. Maeda, H. Iwasaki, R. Wakayama, T. Tanaka, J.
Org. Chem. 2003, 68, 7722–7732; b) H. Ohno, R. Wakayama,
S. I. Maeda, H. Iwasaki, M. Okumura, C. Iwata, H. Mikami-
yama, T. Tanaka, J. Org. Chem. 2003, 68, 5909–5916; c) J.-S.
Shiue, M.-H. Lin, J.-M. Fang, J. Org. Chem. 1997, 62, 4643–
4649; d) H.-G. Schmalz, S. Siegel, J. W. Bats, Angew. Chem.
1995, 107, 2597–2599; Angew. Chem. Int. Ed. Engl. 1995, 34,
2383–2385.
[5] a) Samarium diiodide induced intermolecular couplings of car-
bonyl compounds to indole derivatives: V. Blot, H.-U. Reißig,
Synlett 2006, in press; b) For a few inter- and intramolecular
indole carbonyl coupling reactions mainly providing rearoma-
[13]
Typical Procedure: Synthesis of 9: To a suspension of NaH
(120 mg, 2.96 mmol, 60% suspension in paraffin oil, 1.2 equiv.)
in DMF (8 mL) at room temp. was added
4 (432 mg,
2.47 mmol, 1 equiv.). After 30 min of stirring, alkyl iodide 6
(860 mg, 3.20 mmol, 1.3 equiv.) in DMF (2 mL) was added.
The mixture was stirred overnight, then diluted with Et2O
(10 mL), washed with water (3 times), the organic phase was
dried (MgSO4) and concentrated under reduced pressure. The
resulting oil was dissolved in a mixture of acetone/H2O (1:1,
8 mL) and PTSA (47 mg, 0.25 mmol, 0.1 equiv.) was added.
After completion of the reaction (TLC control), the solution
was diluted with Et2O (10 mL), washed with a saturated aq.
NaHCO3 solution, then the organic layer was dried (MgSO4)
and concentrated. Purification by chromatography on silica gel
(hexane/EtOAc, 2:1) gave corresponding ketone 9 (668 mg,
98%) as a colourless oil. 1H NMR (CDCl3, 500 MHz): δ =
1.55–1.61 (m, 2 H, CH2), 1.82–1.88 (m, 2 H, CH2), 2.08 (s, 3
H, CH3), 2.41 (t, J = 7.1 Hz, 2 H, CH2), 3.90 (s, 3 H, OCH3),
4.13 (t, J = 7.3 Hz, 2 H, NCH2), 7.24–7.29 (m, 2 H, Ar), 7.32–
7.36 (m, 1 H, Ar), 7.78 (s, 1 H, Ar), 8.15–8.19 (m, 2 H, Ar)
ppm. 13C NMR (CDCl3, 126 MHz): δ = 20.8, 29.2 (2 t, CH2),
29.8 (q, CH3), 42.7, 46.8 (2 t, CH2), 50.9 (q, OCH3), 106.9 (s,
Ar), 109.8, 121.7, 121.8, 122.6 (4 d, Ar), 126.7 (s, Ar), 134.0
(d, Ar), 136.3 (s, Ar), 165.4, 207.9 (2 s, CO) ppm. IR (KBr): ν
˜
= 3115, 3055 (=CH), 2995–2890 (CH), 1700 (CO), 1535 (C=C)
cm–1. MS (EI, 80 eV, 100 °C): m/z (%) = 273 (100) [M]+, 242
Eur. J. Org. Chem. 2006, 4989–4992
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4991