C O M M U N I C A T I O N S
Scheme 1. Derivation of 1,3-Dinitroalkane
Table 2. Asymmetric Catalytic Addition of Nitroalkanes to
Representative Nitroalkenes
a
conv yieldb
drc
product ee%d
entry
R1
R2
R3
(%)
(%)
(syn:anti)
(syn)
(syn)
1
2
3
4
5
6
7
8
Ph
Ph
Me
Me
Me
Me
Me
Me
H
91
74
99
91
92
96
74
94
93
89
87
92
85
93
91
95
98
87
54
83
75
83
90
67
80
79
87
83
83
66
67
68
80
88
0
5.8:1
11.7:1
6.1:1
6.9:1
6.5:1
5.8:1
9.6:1
3.9:1
9.3:1
6.2:1
3.8:1
3.8:1
7.4:1
6.7:1
5.2:1
3.4:1
4.1:1
4a
4a
4b
4b
4c
4d
4e
4f
90
95
91
89
89
91
86
91
92
90
91
88
88
88
e
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
Regarding the reaction mechanism, we propose that the tridentate
4-MeC6H4
4-MeC6H4
4-MeOC6H4
2-MeOC6H4
9b
2
ligand and Et Zn form a dinuclear Zn(II) complex. One zinc atom
e
could activate the nitroalkene through the coordination of the nitro
group to the Lewis acid center. Another zinc atom coordinates to
the nitro group of nitronate. The Michael addition proceeds by the
nucleophilic attack of nitronate on the nitroalkene from the Re face
3,4-(MeO)2C6H3 Me
4-FC6H4
4-FC6H4
2-FC6H4
2-ClC6H4
naphth-2-yl
naphth-2-yl
fur-2-yl
4-ClC6H4
PhCH2CH2
Ph
Me
Me
Me
Me
Me
Me
Me
Me
Me
Et
e
9
4f
(
see Supporting Information) to afford the observed stereochemistry.
1
1
1
1
1
1
1
1
1
0
1
2
3
4
5
6
7
8
4g
4h
4i
4i
4j
4k
4l
4m
i
The presence of Ti(O Pr)
it may activate the Et Zn through the formation of an ate complex.
4
seems to be crucial for the reaction, and
2
e
In summary, bis(oxazoline) ligand 1c and bis(thiazoline) ligand
c were found to promote the Zn(II)-catalyzed stereoselective
2
f
nd
72
88
addition of nitroalkanes to a range of nitroalkenes. This new
procedure represents an important advance in the chemistry of the
nitro group, allowing the catalytic asymmetric synthesis of 1,3-
dinitroalkanes with high diastereoselectivity and enantioselectivity.
These 1,3-dinitroalkanes can be conveniently transformed to the
corresponding enantioenriched 1,3-diamines and cyclic thioureas.
Ph
Me Me 10
a
b
For reaction conditions, see Table 1 or Supporting Information. Yield
c
1
d
isolated after silica gel chromatography. Determined by H NMR. De-
termined by HPLC directly or through thiourea derivatives; see Supporting
Information. Ligand 2c was used instead of 1c, and the reaction was
e
f
Acknowledgment. We thank the National Natural Science
conducted at room temperature. Enantiomers of 4k and its thiourea
derivative cannot be separated by HPLC.
Foundation of China (Grant Nos. 20372001, 20572003, and
2
0521202) and Peking University for financial support.
Michael addition was successfully extended to 2-phenylethyl-
substituted nitroalkene 3l, and 72% ee was obtained (entry 16);
however, aliphatic alkyl-substituted nitroalkenes produced mixtures
of diastereoisomers that could not be analyzed by 1H NMR
spectroscopy. Other normal nitroalkanes can also be used as Michael
donors in this addition. The addition of nitromethane to â-nitro-
styrene afforded achiral product in 85% yield. The addition of
Supporting Information Available: Experimental procedures,
copies of spectra, and the crystal data of 4f and 4d (CIF file). This
material is available free of charge via the Internet at http://pubs.acs.org.
References
(
1) Ballini, R.; Bosica, G.; Fiorini, D.; Palmieri, A.; Petrini, M. Chem. ReV.
1
-nitropropane to â-nitrostyrene afforded the corresponding syn
2005, 105, 933.
(
2) Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 1877.
3) Ballini, R. In Studies in Natural Products Chemistry; Atta-ur-Rahman,
Ed., Elsevier: Amsterdam, 1997; Vol. 19, p 117.
product with 88% ee (entry 17). No addition product was formed
using 2-nitropropane as Michael donor (entry 18), which we
ascribed to the steric bulk of the 2°-carbon. This steric effect also
explains why the nitroalkane product does not compete with the
starting nitroalkane for the Michael acceptor. The X-ray diffraction
analysis of single crystals obtained from compounds 4f and 4k
indicates that they both have syn relative configuration and (2R,3R)
absolute configuration (see Supporting Information). Thus, we
propose by analogy that all the major products had the same
stereochemistry. In addition, most syn products are solid, which
can be easily recrystallized from ethanol and/or methanol to improve
their optical purity.
These synthesized 1,3-dinitroalkanes can be further transformed
to useful compounds. For example, 4b (91% ee) was catalytically
hydrogenated to the corresponding 1,3-diamine 5b in almost
quantitative yield after evaporation of filtrates. Without further
purification, the diamine was refluxed with carbon disulfide in THF
to afford chiral cyclic thiourea 6b in 53% yield without loss of
(
(4) Escribano, F. C.; Alc a´ ntara, M. D.; G o´ mez-S a´ nchez, A. Tetrahedron Lett.
1988, 29, 6001.
(5) Pham-Huu, D. P.; Petru sˇ ov a´ , M.; BeMiller, J. N.; Petru sˇ , L. Tetrahedron
Lett. 1999, 40, 3053.
(
6) (a) Axenrod, T.; Watnick, C.; Yazdekhasti, H.; Dave, P. R. J. Org. Chem.
1995, 60, 1959. (b) Marchand, A. P.; Rajagopal, D.; Bott, S. G.; Archibold,
T. G. J. Org. Chem. 1995, 60, 4943. (c) Wade, P. A.; Dailey, W. P.;
Carroll, P. J. J. Am. Chem. Soc. 1987, 109, 5452.
(7) For selected examples of unasymmetric synthesis of 1,3-dinitro com-
pounds, see: (a) Alc a´ ntara, M. D.; Escribano, F. C.; G o´ mez-S a´ nchez,
A.; Di a´ nez, M. J.; Estrada, M. D.; L o´ pez-Castro, A.; P e´ rez-Garrido, S.
Synthesis 1996, 64. (b) Ballini, R.; Bosica, G.; Fiorini, D.; Palmieri, A.
Synthesis 2004, 1938.
(
8) McManus, H. A.; Guiry, P. J. J. Org. Chem. 2002, 67, 8566.
(
9) (a) Lu, S. F.; Du, D. M.; Zhang, S. W.; Xu, J. Tetrahedron: Asymmetry
2004, 15, 3433. (b) Du, D. M.; Lu, S. F.; Fang, T.; Xu, J. J. Org. Chem.
005, 70, 3712.
2
(
10) For examples of other dinuclear zinc catalysts, see: (a) Trost, B. M.;
Frederiksen, M. U.; Pupillon, J. P. N.; Harrington, P. E.; Shin, S.;
Shireman, B. T. J. Am. Chem. Soc. 2005, 127, 3666. (b) Trost, B. M.;
Shin, S.; Sclafani, J. A. J. Am. Chem. Soc. 2005, 127, 8602. (c) Xiao, Y.;
Wang, Z.; Ding, K. Chem.sEur. J. 2005, 11, 3668.
11) For selected examples, see: (a) Welch, K. T.; Virga, K. G.; Whittemore,
N. A.; O¨ zen, C.; Wright, E.; Brown, C. L.; Lee, R. E.; Serpersu, E. H.
Bioorg. Med. Chem. 2005, 13, 6252. (b) Gray, C. W.; Walker, B. T.;
Foley, R. A.; Houston, T. A. Tetrahedron Lett. 2003, 44, 3309.
12) (a) Venkatachalam, T. K.; Mao, C.; Uckun, F. M. Bioorg. Med. Chem.
2004, 12, 4275. (b) Venkatachalam, T. K.; Sudbeck, E. A.; Mao, C.;
Uckun, F. M. Bioorg. Med. Chem. Lett. 2000, 10, 2071.
(
enantioselectivity (Scheme 1). Since bioactivities of 1,3-diamine
derivatives have been investigated,11 enantiopure 1,3-diamines
should be valuable synthetic intermediates. In addition, chiral
thioureas have attracted attention in recent years due to their anti-
HIV activities.12
(
JA0604008
J. AM. CHEM. SOC.
9
VOL. 128, NO. 23, 2006 7419