Communication
ChemComm
Mito-Tracker and a very weak correlation with ER-Tracker
in MCF-7 cells (Fig. S16, ESI†). Line plot analysis showed that
4 Y. Yan, J. Chen, L. Zhang, Q. Zheng, Y. Han, H. Zhang, D. Zhang,
T. Awakawa, I. Abe and W. Liu, Angew. Chem., Int. Ed., 2013, 52,
1
2308–12312.
4
(
was much better correlated with lipids than with ER-Tracker
Fig. S17, ESI†), suggesting that neoantimycin does not target
ER. This observation is consistent with previous reports that
the known antimycin target, Bcl /Bcl-x , is not a neoantimycin
5
6
7
8
9
J. R. W. Conway, N. O. Carragher and P. Timpson, Nat. Rev. Cancer,
2014, 14, 314.
L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C. C. Lin, M. C. Wang and
W. Min, Nat. Methods, 2014, 11, 410–412.
S. Hong, T. Chen, Y. Zhu, A. Li, Y. Huang and X. Chen, Angew.
Chem., Int. Ed., 2014, 53, 5827–5831.
L. Wei, F. Hu, Z. Chen, Y. Shen, L. Zhang and W. Min, Acc. Chem.
Res., 2016, 49, 1494–1502.
2
L
3
7
protein target.
In summary, both the 9- and 15-membered antimycin-type
depsipeptides have been subjected to the SADR study in live
cancer cells. This work provides the first global and dynamic
view of the interplay between these anti-cancer complex natural
products and the complicated network of cellular machinery.
We confirmed the high tolerance of the C-8 modification of the
W. J. Tipping, M. Lee, A. Serrels, V. G. Brunton and A. N. Hulme,
Chem. Soc. Rev., 2016, 45, 2075–2089.
1
0 C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He,
J. C. Tsai, J. X. Kang and X. S. Xie, Science, 2008, 322, 1857–1861.
1 R. C. Prince, R. R. Frontiera and E. O. Potma, Chem. Rev., 2017, 117,
5070–5094.
1
1
1
1
2 J.-X. Cheng and X. S. Xie, Science, 2015, 350, aaa8870.
3 C. H. Camp Jr and M. T. Cicerone, Nat. Photonics, 2015, 9, 295.
4 C. Krafft, M. Schmitt, I. W. Schie, D. Cialla-May, C. Matth ¨a us,
T. Bocklitz and J. Popp, Angew. Chem., Int. Ed., 2017, 56, 4392–4430.
5 H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata
and M. Sodeoka, J. Am. Chem. Soc., 2012, 134, 20681–20689.
6 W. J. Tipping, M. Lee, A. Serrels, V. G. Brunton and A. N. Hulme,
Chem. Sci., 2017, 8, 5606–5615.
9-membered antimycin for its anti-cancer activity and showed
the passive while facile uptake of antimycin by live cancer cells.
Interestingly, the primary localization of the 9-membered anti-
mycin was demonstrated to be in the endoplasmic reticulum
despite the previous known protein targets of antimycin in
various cellular organelles. We also showed that the anti-cancer
activity of the 15-membered neoantimycin was dependent on
the N-formyl moiety and less sensitive toward the C-11 mod-
ification. Importantly, a different intracellular localization of
the 15-membered neoantimycin compared to the 9-membered
antimycin was revealed. Our results further demonstrated that the
1
1
1
1
1
2
7 M. M. Gaschler, F. Hu, H. Feng, A. Linkermann, W. Min and
B. R. Stockwell, ACS Chem. Biol., 2018, 13, 1013–1020.
8 H. Yamakoshi, K. Dodo, M. Okada, J. Ando, A. Palonpon, K. Fujita,
S. Kawata and M. Sodeoka, J. Am. Chem. Soc., 2011, 133, 6102–6105.
9 S. F. El-Mashtoly, D. Petersen, H. K. Yosef, A. Mosig, A. Reinacher-
Schick, C. K o¨ tting and K. Gerwert, Analyst, 2014, 139, 1155–1161.
0 Z. Zhao, Y. Shen, F. Hu and W. Min, Analyst, 2017, 142, 4018–4029.
intracellular enrichment and distribution of these compounds 21 F. Hu, Z. Chen, L. Zhang, Y. Shen, L. Wei and W. Min, Angew. Chem.,
Int. Ed., 2015, 54, 9821–9825.
were driven by their potency and specific protein targets, as well
as the lipophilic properties of compounds. This new integrative
2
2 J. Liu, X. Zhu, S. J. Kim and W. Zhang, Nat. Prod. Rep., 2016, 33,
146–1165.
workflow of SADR study on bioactive natural products is expected 23 L. S. Huang, D. Cobessi, E. Y. Tung and E. A. Berry, J. Mol. Biol.,
1
2005, 351, 573–597.
to extend beyond the traditional SAR study, complement existing
biochemical and proteomic techniques in the mode-of-action
study of natural products, and facilitate efforts in reducing off-
target effects and improving efficacy of candidate compounds in
the early stages of drug discovery.
This research was financially supported by grants to W. Z.
from the American Cancer Society, Alfred P. Sloan Foundation,
and the Chan Zuckerberg Biohub Investigator Program. W. M.
acknowledges support of R01EB020892 and R01GM128214
from NIH, and the Camille and Henry Dreyfus Foundation.
J. A. S. is supported by the National Science Foundation
Graduate Research Fellowship Program. We thank the Berkeley
Cell Culture Facility for providing cell culturing services for the
cytotoxicity assays.
2
4 S. P. Tzung, K. M. Kim, G. Basanez, C. D. Giedt, J. Simon,
J. Zimmerberg, K. Y. Zhang and D. M. Hockenbery, Nat. Cell Biol.,
2001, 3, 183–191.
5 A. A. Salim, K. J. Cho, L. Tan, M. Quezada, E. Lacey, J. F. Hancock
and R. J. Capon, Org. Lett., 2014, 16, 5036–5039.
6 C. J. Barrow, J. J. Oleynek, V. Marinelli, H. H. Sun, P. Kaplita,
D. M. Sedlock, A. M. Gillum, C. C. Chadwick and R. Cooper,
J. Antibiot., 1997, 50, 729–733.
7 Y. Zhou, X. Lin, S. R. Williams, L. Liu, Y. Shen, S.-P. Wang, F. Sun,
S. Xu, H. Deng, P. F. Leadlay and H.-W. Lin, ACS Chem. Biol., 2018,
13, 2153–2160.
8 M. Izumikawa, J. Y. Ueda, S. Chijiwa, M. Takagi and K. Shin-ya,
J. Antibiot., 2007, 60, 640–644.
9 Y. Umeda, S. Chijiwa, K. Furihata, S. Sakuda, H. Nagasawa,
H. Watanabe and K. Shin-ya, J. Antibiot., 2005, 58, 206–209.
0 A. S. Lee, Nat. Rev. Cancer, 2014, 14, 263–276.
1 T. Zhu, S. Cao, P.-C. Su, R. Patel, D. Shah, H. B. Chokshi, R. Szukala,
M. E. Johnson and K. E. Hevener, J. Med. Chem., 2013, 56,
2
2
2
2
2
3
3
6
560–6572.
3
2 H. J. Lee, W. Zhang, D. Zhang, Y. Yang, B. Liu, E. L. Barker,
K. K. Buhman, L. V. Slipchenko, M. Dai and J.-X. Cheng, Sci. Rep.,
2015, 5, 7930.
Conflicts of interest
3
3
3 M. Sandy, X. Zhu, Z. Rui and W. Zhang, Org. Lett., 2013, 15,
3396–3399.
There are no conflicts to declare.
4 A. Schinzel, T. Kaufmann and C. Borner, Biochim. Biophys. Acta, Mol.
Cell Res., 2004, 1644, 95–105.
References
35 G. R. Pettit, R. Tan, R. K. Pettit, T. H. Smith, S. Feng, D. L. Doubek,
L. Richert, J. Hamblin, C. Weber and J. C. Chapuis, J. Nat. Prod.,
2007, 70, 1069–1072.
36 G. R. Pettit, T. H. Smith, S. Feng, J. C. Knight, R. Tan, R. K. Pettit and
P. A. Hinrichs, J. Nat. Prod., 2007, 70, 1073–1083.
1
2
3
D. J. Newman and G. M. Cragg, J. Nat. Prod., 2016, 79, 629–661.
J. A. Prescher and C. R. Bertozzi, Nat. Chem. Biol., 2005, 1, 13.
S. M. DeGuire, D. C. Earl, Y. Du, B. A. Crews, A. T. Jacobs, A. Ustione,
C. Daniel, K. M. Chong, L. J. Marnett, D. W. Piston, B. O. Bachmann 37 S. A. Vanner, X. Li, R. Zvanych, J. Torchia, J. Sang, D. W. Andrews
and G. A. Sulikowski, Angew. Chem., Int. Ed., 2015, 54, 961–964. and N. A. Magarvey, Mol. BioSyst., 2013, 9, 2712–2719.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019