Please do not adjust margins
RSC Advances
Page 3 of 8
DOI: 10.1039/C5RA16193B
Journal Name
ARTICLE
154 (CH2CH2S), 28.9 (CH2(CH2)2S), 29.0 (CH2(CH2)3S),
155 (CH2(CH2)4S), 29.4 (CH3(CH2)2CH2), 29.5 (CH3(CH2)3CH2), 2
156 (CH3(CH2)4(CH2)2), 31.9 (CH3CH2CH2), 33.2 (CH2CH2C(=O)
157 37.1 (CH2CH2S), 46.0 ((CH3)C(C≡N)), 118.6 (C(C≡N)), 16
158 (C(=O)O), 168.8 (N(C=O)2), 216.5 (SC(=S)S). FTIR (cm-1): 29
159 (υasCH2), 2848 (υsCH2), 2235 (υC≡N), 1820, 1783 (υC=O, imid
160 1734 (υC=O, ester), 1423, 1383, 1293, 1199 (υC-O, ester), 10
161 (υC=S), 884, 803(υasS-C-S).
2
2
9
1
.6
.3
0
J=7.6 Hz, 2 H, CH2CH2S), 4.64 (q, J=7.0 Hz, 1 H, CH(CH3)), 6.39
(dd, J=7.9, 2.1 Hz, 1 H, ArC-H(m-OH)), 6.54 (d, J=2.4 Hz, 1 H,
ArC-H(o-OH)), 6.59 (d, J=7.6 Hz, 1 H, ArC-H(o-OH)); 8.60 (s) &
8.69 (s) (2H, Ar-OH), 8.31(t, J=5.6 Hz, 1 H, NHCH2CH2); 13C NMR
(100 MHz, CDCl3) δ (ppm): 14.1 (CH3CH2CH2), 16.1 (CH(CH3)),
22.7 (CH3CH2CH2), 27.8 (CH2CH2S), 28.9 (CH2(CH2)2S), 29.1
(CH2(CH2)3S), 29.3 (CH2(CH2)4S), 29.4 (CH3(CH2)2CH2), 29.5
29
2O1)2,
271.03
21164
2e1)5,
2
1
1
6
1
6
6
217 (CH3(CH2)3CH2), 29.6 (CH3(CH2)4(CH2)2), 31.9 (CH3CH2CH2), 34.6
218 (NHCH2CH2),37.7 (CH2CH2S), 41.3 (NHCH2CH2),47.8 (CH(CH3)),
162 Synthesis of Catechol End Group CTAs (Dopa-CTAs (3a-c)):
219 115.3 (ArC-H(o-OH)), 115.5 (ArC-H(o-OH)), 120.7 (ArC-H(m-
163 Typically, dopamine hydrochloride (0.50 g, 2.64mmol) and
220 OH)), 130.4 (CH2-ArC), 142.9 (ArC-OH), 144.0 (ArC-OH), 171.4
164 each of Suc-CDSPA, Suc-DDMAT and Suc-DoPAT (2.13 mmol)
221 (CHC(=O)NH), 223.4 (SC(=S)S). FTIR (cm-1): 3341 (υNH, amide),
165 were added to MeOH (30 mL) with Et3N (0.40 mL, 2.87mmol),
222 3238 (υOH, phenol), 2922 (υasCH2), 2848(υsCH2), 1633 and
166 and allowed to undergo dark reaction for 48 hr at room
223 1616 (υC=O, amide I & υC=C, aromatic), 1522 (υC-N & δNH,
167 temperature under continuous stirring. At the end of the
224 amide II), 1465, 1365, 1281, 1193, 1070 (υC=S), 813 (υasS-C-S).
168 reaction, the solvent was removed by rotary evaporation,
225 Dopa-CDSPA: H NMR (600 MHz, CDCl3) δ (ppm): 0.89 (t, J=6.8
169 followed by the addition of ether (20 mL) and washing of the
226 Hz, 3 H, CH3CH2CH2), 1.22 - 1.34 (m, 16 H, CH3(CH2)8CH2), 1.35 -
170 aqueous phase. Subsequently, the ether phase was washed
227 1.45 (m, 2 H, CH2(CH2)2S), 1.69 (quint, J=7.5 Hz, 2 H, CH2CH2S),
171 with deionized water (3×15 mL) and brine (3×15 mL). The
228 1.88 (s, 3 H, C(CH3)), 2.32 - 2.39 (m, 1 H, CH2 CH2C(=O)), 2.42 -
172 ether solvent was removed by vacuum evaporation, and then
229 2.47 (m, 2 H, CH2CH2C(=O)), 2.48 - 2.55 (m, 1 H, CH2 CH2C(=O)),
173 the viscous solute cooled (4oC) before precipitating in hexane
230 2.71 (t, J=7.0 Hz, 2 H, CH2-ArC), 3.33 (t, J=7.5 Hz, 2 H, CH2CH2S),
174 (except for Dopa-CDSPA) to give a bright yellow solid product,
231 3.43 - 3.54 (m, 2 H, NHCH2CH2), 5.63 (t, J=5.9 Hz, 1 H,
175 which was vacuum dried. In the case of Dopa-CDSPA, further
232 NHCH2CH2), 6.61 (dd, J=8.2, 1.7 Hz, 1 H, ArC-H(m-OH)), 6.72 (d,
176 purification was carried out via preparative column
1
a
b
233 J=1.8 Hz, 1 H, ArC-H(o-OH)), 6.83 (d, J=8.2 Hz, 1 H, ArC-H(o-
177 chromatography using silica gel (ethyl acetate: hexane= 3:1
234 OH)); 13C NMR (100 MHz, CDCl3) δ (ppm): 14.1 (CH3CH2CH2),
235 22.7 (CH3CH2CH2), 24.8 (C(CH3)), 27.7 (CH2CH2S), 29.0
178 v/v).
179 Dopa-DDMAT: 1H NMR (600 MHz, CDCl3) δ (ppm): 0.89 (t, J=7.0
236 (CH2(CH2)2S), 29.1 (CH2(CH2)3S), 29.3 (CH2(CH2)4S), 29.4
180 Hz, 3 H, CH3CH2CH2), 1.23- 1.32 (m, 16 H, CH3(CH2)8CH2), 1.36 -
237 (CH3(CH2)2CH2), 29.5 (CH3(CH2)3CH2), 29.6 (CH3(CH2)4(CH2)2),
181 1.41 (m, 2 H, CH2(CH2)2S), 1.66 (s, 8 H, CH2CH2S, C(CH3)2), 2.67
238 31.9 (CH3CH2CH2, CH2C(=O)NH), 34.5 (CH2CH2C(=O)), 34.6
182 (t, J=7.0 Hz, 2 H, CH2-ArC), 3.26 (t, J=7.6 Hz, 2 H, CH2CH2S),
239 (NHCH2CH2), 37.1 (CH2CH2S), 41.2 (NHCH2CH2), 46.6
183 3.41-3.49 (m, 2 H, NHCH2CH2), 6.56 (dd, J=8.0, 2.2 Hz, 1 H, ArC-
240 ((CH3)C(C≡N)), 119.2 (C(C≡N)), 115.5 (ArC-H(o-OH)), 115.7 (ArC-
184 H(m-OH)), 6.64 (t, J=5.5 Hz, 1 H, NHCH2CH2), 6.71 (d, J=2.0 Hz,
241 H(o-OH)), 120.8 (ArC-H(m-OH)), 130.7 (CH2-ArC), 142.9 (ArC-
185 1 H, ArC-H(o-OH)), 6.80 (d, J=8.2 Hz, 1 H, ArC-H(o-OH)); 13C
242 OH), 144.1 (ArC-OH), 171.4 (CH2C(=O)NH), 217.2 (SC(=S)S). FTIR
186 NMR (100 MHz, CDCl3) δ (ppm): 14.1 (CH3CH2CH2), 22.7
243 (cm-1): 3286 (overlap: υNH, amide & υOH, phenol), 2919
187 (CH3CH2CH2), 25.8 (C(CH3)2), 27.7 (CH2CH2S), 29.0 (CH2(CH ) S),
2 2244 (υasCH2), 2851(υsCH2), 2233 (υC≡N), 1640 and 1603 (υC=O,
188 29.1(CH2(CH2)3S), 29.3 (CH2(CH2)4S), 29.4 (CH3(CH2)2CH2), 29.5
245 amide I & υC=C, aromatic), 1519 (υC-N & δNH, amide II), 1442,
189 (CH3(CH2)3CH2), 29.6 (CH3(CH2)4(CH2)2), 31.9 (CH3CH2CH2), 34.5
246 1360, 1280, 1193, 1151, 1112 1065 (υC=S), 803 (υasS-C-S).
190 (NHCH2CH2), 37.2 (CH2CH2S), 41.7 (NHCH2CH2), 57.1 (C(CH3)2),
191 115.2 (ArC-H(o-OH)), 115.4 (ArC-H(o-OH)), 120.8 (ArC-H(m47
192 OH)), 130.8 (CH2-ArC), 142.9 (ArC-OH), 144.0 (ArC-OH), 17 .2
193 (CC(=O)NH), 219.9 (SC(=S)S). FTIR (cm-1): 3340 (υNH, amid
194 3186 (υOH, phenol), 2920 (υasCH2), 2850(υsCH2), 1622 a
195 1604 (υC=O, amide I & υC=C, aromatic), 1531 (υC-N & δN25
2
2348
2e4)9,
2n5d0
-
RAFT Polymerization of Acrylamide: All polymerization
experiments were performed at 2M monomer concentration
([M]0 = 0.049 mol AM) in 24.5 mL DMSO/DMF (97:3, vol%)
solvent (vol. of DMF is equivalent to 0.2[AM]0) and 70oC under
argon atmosphere. The DMF was added as an internal
2S5)2, reference for the determination of conversion of monomer
H1,
196 amide II), 1447, 1361, 1291, 1252, 1158, 1112, 1072 (υC=
197 813 (υasS-C-S).
253 using subsequent NMR analysis. The initial CTA to initiator
198 Dopa-DoPAT: 1H NMR (600 MHz, CDCl3) δ (ppm): 0.89 (t, J=
27
5
.0
4
ratio ([CTA]0/[I]0= 5) and the initial monomer to CTA ratio
([M]0/[CTA]0 = 500) were held constant to ensure controlled
polymerization. AM (3.554 g, 0.049 mol), ACVA (5.6 mg, 0.0196
mmol), 24.5 mL DMSO/DMF (97:3 vol%) solvent and the
catechol-end RAFT agent (0.098 mmol each, 3a-c) were added
to a 100-mL two-neck round-bottom flask equipped with a
magnetic stirrer, and a reflux condenser was connected to one
of its necks. The flask had its other neck sealed with a rubber
septum through which its content was purged with argon for
20 min, before immersing the flask into an oil bath for
temperature control as the experiment commenced. At
predetermined intervals, 2-3 drops of samples were taken for
199 Hz, 3 H, CH3CH2CH2), 1.21 - 1.35 (m, 16 H, CH3(CH2)8CH2), 1.3
200 1.45 (m, 2 H, CH2(CH2)2S), 1.55 (d, J=7.6 Hz, 3 H, CH(CH3)), 1.7
201 (quin, J=7.5 Hz, 2 H, CH2CH2S), 2.66 (t, J=6.8 Hz, 2 H, CH2-ArC
202 3.28 - 3.49 (m, 4 H, CH2CH2S, NHCH2CH2), 4.69 (q, J=7.6 Hz, 125H8,
2755-
2516
25)7,
203 CH(CH3)), 6.50 (t, J=5.6 Hz, 1 H, NHCH2CH2), 6.57 (dd, J=7.9,
2
2H
2
2
2(6d3,
2S6)4,
2
5
.1
))
SO61
(m62
9
204 Hz, 1 H, ArC-H(m-OH)), 6.67(d, J=1.8 Hz, 1 H, ArC-H(o-O
6
0,
205 6.80 (d, J=8.2 Hz, 1 H, ArC-H(o-OH));1H NMR (600 MHz, DM
-
206 d6) δ (ppm): 0.83 (t, J=6.8 Hz, 3 H, CH3CH2CH2), 1.16 - 1.27
207 16 H, CH3(CH2)8CH2), 1.28 - 1.35 (m, 2 H, CH2(CH2)2S), 1.42
208 J=7.0 Hz, 3 H, CH(CH3)), 1.60 (quin, J=7.5 Hz, 2 H, CH2CH2
209 2.48 (m, 2 H, CH2-ArC), 3.10 - 3.22 (m, 2 H, NHCH2CH2), 3.3326(t
,
5,
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins