4
findings from this assay, the anionic fluoroquinolones 1c and 1p
were less hindered by the alginate barrier compared to
ciprofloxacin and tobramycin. Conversely, the constituents found
in CF patient sputum did not appear to affect the penetration of
these standard antibiotics. Follow up studies using sputum from
different CF patient populations will be performed to further
corroborate these findings.
responsibility of the authors and does not necessarily represent
the official views of the NIH.
References and notes
1. Driscoll, J. A.; Brody, S. L.; Kollef, M. H. Drugs 2007, 67, 351
2. Ciofu, O.; Riis B.; Pressler T.; Poulsen H. E.; Høiby, N. Antimicrob.
Agents. Chemother. 2005, 49, 2276
3. Vinckx, T.; Wei, Q.; Matthijs, S.; Cornelis, P. Microbiology 2010, 156,
678
In summary, select anionic derivatives of the fluoroquinolone
ciprofloxacin were found to possess antipseudomonal activity
against biofilm-producing P. aeruginosa. The C-7 position was
highly sensitive to chemical modification that may have affected
DNA gyrase binding and/or cellular entry. It was further
ascertained by the microdiffusion assay that the anionic
fluoroquinolones appeared to have less chemical interactions
with the alginate constituent from the EPS of PAO581 than
ciprofloxacin and tobramycin. Conversely, the data suggests that
the standard antibiotics penetrate CF respiratory mucus more
effectively than the anionic fluoroquinolones. As a hallmark of
the CF pathology, the hypersecretion of respiratory mucus
facilitates persistent infection of the lower airways by
Pseudomonas and adversely affects drug bioavailability (Figure
5). Treatment efficacy with inhaled and systemic antibiotics is
not only predicated by the chemical constituents in the secreted
mucus and Pseudomonas EPS but also the physiochemical
properties of the drugs. This study established that ciprofloxacin
can be chemically modified to modulate permeation in bacterial
EPS and respiratory mucus as discerned by the microdiffusion
assay. If developed further, this novel in vitro method to evaluate
drug penetration against various biological barriers could become
useful tool to help guide antimicrobial therapy in patients with
chronic pulmonary disease.
4. Mathee, K.; Ciofu, O.; Sternberg, C.; Lindum, P. W.; Campbell, J. I.;
Jensen, P.; Johnsen, A. H.; Givskov, M.; Ohman, D. E.; Molin, S.;
Høiby, N.; Kharazmi, A. Microbiology 1999, 145, 1349
5. Mann, E. E.; Wozniak, D. J. FEMS Microbiol. Rev. 2012, 36, 893
6. Hatch, R. A.; Schiller, N. L. Antimicrob. Agents Chemother. 1998, 42,
974
7. Stover, C. K.; Pham, X. Q.; Erwin, A. L.; Mizoguchi, S. D.; Warrener,
P.; Hickey, M. J.; Brinkman, F. S.; Hufnagle, W. O.; Kowalik, D. J.;
Lagrou, M.; Garber, R. L.; Goltry, L.; Tolentino, E.; Westbrock-
Wadman, S.; Yuan, Y.; Brody, L. L.; Coulter, S. N.; Folger, K. R.; Kas,
A.; Larbig, K.; Lim, R.; Smith, K.; Spencer, D.; Wong, G. K.; Wu, Z.;
Paulsen, I. T.; Reizer, J.; Saier, M. H.; Hancock, R. E.; Lory, S.; Olson,
M. V. Nature 2000, 406, 959
8. Yin, Y.; Withers, T. R.; Govan, J. R.; Johnson, S. L.; Yu ,H. D. Genome
Announc. 2013, 1, e00834-13
9. Qiu, D.; Eisinger, V. M.; Head, N. E.; Pier, G. B.; Yu, H. D.
Microbiology 2008, 154, 2119
10. Vavříková, E.; Polanc, S.; Kočevar, M.; Horváti, K.; Bosze, S.;
Stolaříková, J.; Vávrová, K.; Vinšová. J. Eur. J. Med. Chem. 2011, 46,
4937
11. Ji, C.; Miller, P. A.; Miller, M. J. ACS Med. Chem. Lett. 2015, 6, 707
12. Cormier, R.; Burda, W. N.; Harrington, L.; Edlinger, J.; Kodigepalli, K.
M.; Thomas, J.; Kapolka, R.; Roma, G.; Anderson, B. E.; Turos, E.;
Shaw, L. N. Bioorg. Med. Chem. Lett. 2012, 22, 6513
13. Noël, S.; Gasser, V.; Pesset, B.; Hoegy, F.; Rognan, D.; Schalk, I. J.;
Mislin, G. L. Org. Biomol. Chem. 2011, 9, 8288
14. Hengzhuang, W.; Ciofu, O.; Yang, L.; Wu, H.; Song, Z.; Oliver, A.;
Høiby, N. Antimicrob. Agents Chemother. 2013, 57, 196
15. Fardeau, S.; Dassonville-Klimpt, A.; Audic, N.; Sasaki, A.; Pillon, M.;
Baudrin, E.; Mullié, C.; Sonnet, P. Bioorg. Med. Chem. 2014, 22, 4049
16. Damron, F. H.; Yu, H. D. J. Bacteriol. 2011, 193, 286
Figure 5: Respiratory mucus and EPS of Pseudomonas biofilms reduce the
bioavailability of inhaled and systemic antibiotics.
Acknowledgements
This research was supported in part by the Marshall University
School of Pharmacy FRS Grant Program and the Office of
Experiential Learning for financial support. Special thanks is also
given to NASA West Virginia EPSCoR grant program, the
National Center for Research Resources, the National Center for
Advancing Translational Sciences, and National Institutes of
Health (NIH), through Grant UL1TR000117. HDY is supported
by NIH P20GM103434 to the West Virginia IDeA Network for
Biomedical Research Excellence, and is the co-founder of
Progenesis Technologies, LLC. The content is solely the