RSC Advances
Paper
The selectivity of the sensor was evaluated by examining the
interference of possible coexisting substances in drug and
biological samples. The results are shown in Table 2, using a 1.5
mM vanillin standard solution, no interference (deviation <5%)
with 500-fold Fe3+, Al3+, and SO42ꢁ; 300-fold glucose and
sucrose; 200-fold K+; 100-fold maltose, L-leucine, Ca2+, Na+,
HCO3ꢁ, and Clꢁ; 50-fold starch, dextrin, L-gystein, L-phenylala-
2 Z. Dong, F. Gu, F. Xu and Q. Wang, Food Chem., 2014, 149,
54–61.
3 A. Shoeb, M. Chowta, G. Pallempati, A. Rai and A. Singh,
Indian J. Pharmacol., 2013, 45, 141–144.
4 S. Srinual, P. Chanvorachote and V. Pongrakhananon, Int. J.
Oncol., 2017, 50, 1341–1351.
5 M. E. Kim, J. Y. Na, Y. D. Park and J. S. Lee, Appl. Biochem.
Biotechnol., 2019, 187, 884–893.
+
nine, Mg2+, Zn2+, Cu2+, NH4 , CO32ꢁ, NO3ꢁ; and 10-fold ascorbic
acid. Fig. S3† showed the DPV of 1.5 mM vanillin at FePc MOF/
GCE when coexisting with 150 mM UA and DA. It can be seen
that owing to the oxidation potential differences, the oxidation
peak of vanillin (oxidation peak: 0.5–0.70 V) is signicantly
higher than UA (oxidation peak: 0.2–0.5 V) and less than DA
(oxidation peaks: 0.9–1.1 V). Therefore, the interference of UA
and DA can be ignored when the interference analysis ratio is
100 : 1. These results indicate that the FePc MOF/GCE had good
selectivity for vanillin determination.
6 I. Mourtzinos, S. Konteles, N. Kalogeropoulos and
V. T. Karathanos, Food Chem., 2009, 114, 791–797.
7 L. Jiang, Y. Ding, F. Jiang, L. Li and F. Mo, Anal. Chim. Acta,
2014, 833, 22–28.
8 N. Ochiai, K. Sasamoto, A. Hoffmann and K. Okanoya, J.
Chromatogr. A, 2012, 1240, 59–68.
9 C. Liu, L. Zhao, Z. Sun, N. Cheng, X. Xue, L. Wu and W. Cao,
Anal. Methods, 2018, 10, 743–748.
10 S. S. Hingse, S. B. Digole and U. S. Annapure, J. Anal. Sci.
Technol., 2014, 5, 21.
11 M. Shu, Y. Man, H. Ma, F. Luan, H. Li and Y. Gao, Food Anal.
Methods, 2016, 9, 1706–1712.
12 N. Altunay, LWT–Food Sci. Technol., 2018, 93, 9–15.
13 F. Bettazzi, I. Palchetti, S. Sisalli and M. Mascini, Anal. Chim.
Acta, 2006, 555, 134–138.
14 H.-C. Zhou, J. R. Long and O. M. Yaghi, Chem. Rev., 2012,
112, 673–674.
15 H.-C. Zhou and S. Kitagawa, Chem. Soc. Rev., 2014, 43, 5415–
5418.
3.8 Analysis of real samples
To evaluate the practicality of the developed sensor, the feasi-
bility of vanillin detection in vanillin tablets and human serum
was investigated using DPV under the optimized conditions. As
shown in Table S1,† satisfactory vanillin recoveries were ob-
tained using the FePc MOF/GCE. Moreover, the vanillin
contents determined using the FePc MOF/GCE were in good
agreement with those obtained by UV analysis, indicating that
the sensor has good application potential for determining the
vanillin content of real samples (Table S2†).
16 G. Cai and H.-L. Jiang, Angew. Chem., Int. Ed., 2017, 56, 563–
567.
17 T. Mehtab, G. Yasin, M. Arif, M. Shakeel, R. M. Korai,
M. Nadeem, N. Muhammad and X. Lu, J. Energy Storage,
2019, 21, 632–646.
18 H. Li, L. Li, R.-B. Lin, W. Zhou, Z. Zhang, S. Xiang and
B. Chen, EnergyChem, 2019, 1, 100006.
19 L. Chen and Q. Xu, Matter, 2019, 1, 57–89.
20 E. Naghian, E. M. Khosrowshahi, E. Sohouli, F. Ahmadi,
M. R. Nasrabadi and V. Safarifard, New J. Chem., 2020, 44,
9271–9277.
21 C. Bao, Q. Niu, Z.-A. Chen, X. Cao, H. Wang and W. Lu, RSC
Adv., 2019, 9, 29474–29481.
4. Conclusions
In this work, a novel electrochemical sensor was developed for
the determination of vanillin by modifying a GCE with FePc
MOF. The good electrocatalytic performance of the FePc MOF
may be due to its pore structure, which can absorb vanillin and
accelerate the electron-transfer rate, thus increasing the oxida-
tion rate. The fabricated sensor exhibited a linear response
range for vanillin of 0.22–29.14 mM with an LOD of 0.05 mM.
Moreover, the prepared sensor was successfully applied to
detect the content of vanillin in tablets and human serum.
22 Z. Zeng, X. Fang, W. Miao, Y. Liu, T. Maiyalagan and S. Mao,
ACS Sens., 2019, 4, 1934–1941.
23 X. Fang, X. Chen, Y. Liu, Q. Li, Z. Zeng, T. Maiyalagan and
S. Mao, ACS Appl. Nano Mater., 2019, 2, 2367–2376.
24 X. Fang, B. Zong and S. Mao, Nano-Micro Lett., 2018, 10, 64.
25 Z. Liu, Q. Jiang, R. Zhang, R. Gao and J. Zhao, Electrochim.
Acta, 2016, 187, 81–91.
Conflicts of interest
There are no conicts to declare.
Acknowledgements
26 N. Masilela and T. Nyokong, Dyes Pigm., 2010, 84, 242–248.
˙
This work was supported by the Natural Science Foundation of
27 A. Gelir, I. Yılmaz and Y. Yılmaz, J. Phys. Chem. B, 2007, 111,
Guangxi
Province
[grant
no.
2016GXNSFAA380113,
478–484.
2018JJA12000] and the National Natural Science Foundation of
China [grant no. 21465004].
¨
28 M. K. Sener, A. Koca, A. Gul and M. B. Kocak, Polyhedron,
2007, 26, 1070–1076.
´
´
29 N. Silva, C. Castro-Castillo, M. P. Oyarzun, S. Ramırez,
C. Gutierrez-Ceron, J. F. Marco, J. F. Silva and J. H. Zagal,
Electrochim. Acta, 2019, 308, 295–306.
References
˘
˘
1 F. Shakee, N. Haq, N. A. Siddiqui, F. K. Alanazi and 30 M. Arıcı, D. Arıcan, A. L. Ugur, A. Erdogmu¸s and A. Koca,
I. A. Alsarra, Food Chem., 2015, 188, 57–61.
Electrochim. Acta, 2013, 87, 554–566.
36834 | RSC Adv., 2020, 10, 36828–36835
This journal is © The Royal Society of Chemistry 2020