2594
Y.-M. Jeon et al. / Tetrahedron Letters 48 (2007) 2591–2595
rical salen ligand 4A can be synthesized alternatively by
the reaction of (1R,2R)-(ꢀ)-1,2-diaminocyclohexane 1
with 2 equiv of 4-(3-hydroformyl-4-hydroxy-5-t-butyl-
phenyl)benzoic acid 2A in refluxing pyridine. Finally,
the resulting salen-type ligands 4A–E with acid func-
tional groups can be metalated easily with Mn(OAc)2/
LiCl in air to form complexes 5A–E using a literature
which 3481 were unique (Rint = 0.1131). Refinement
proceeded to wR = 0.1227 (all data), R = 0.0561 and
GOF = 0.808 [I > 2r(I)]. Maximum residual electron
density was 0.234 e A . Crystallographic data (excluding
structure factors) for the structure in this paper have been
deposited with the Cambridge Crystallographic Data
Centre as the supplementary publication number CCDC-
2
1
˚
ꢀ3
6
23453. Copy of the data can be obtained, free of charge,
procedure analogous to those used to synthesize (R,R)-
on application to CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK [fax: +44(0)-1223-336033 or e-mail:
deposit@ccdc.cam.ac.uk.
0
(
ꢀ)-1,2-cyclohexanediamine-N,N -bis(3-tert-butyl-5-(4-
III
4,18
pyridyl)salicylidene)Mn Cl (Scheme 2).
1
7. A slurry of 3A (0.31 g, 0.79 mmol) and 5-(4-pyridyl)sali-
cylaldehyde 2E (0.20 g, 0.79 mmol) in pyridine (20 mL)
was heated to reflux for 1 h, which gave a clear yellow
solution. The solvent was removed under reduced pressure
and the resulting solid was sonicated with ether (10 mL).
The solvent was evaporated and dried under vacuum to
give an analytically pure yellow solid 4E (0.48 g, 96%).
This work demonstrates that one can synthesize acid-
functionalized symmetric and dissymmetric salen-type
ligands via a novel self-protection step in a quantitative
yield. This synthetic method allows one to quickly pre-
pare salen-based dissymmetric chiral compounds with
tailorable coordinating properties. Therefore, this
approach provides a blueprint for synthesizing and eval-
uating a new class of acid-functionalized salen ligands
that can be used as chiral building blocks for a wide
range of MOFs with potentially tailorable asymmetric
catalytic activity.
Analytical data for compounds 4A–E are as follows:
1
6
Compound 4A: H NMR (DMSO-d ): d 1.34 (s, 9H,
–C(CH ) ), 1.42–1.99 (br m, 4H, –CH –), 3.46 (br s, 1H,
3
3
2
–CH–), 7.48 (s, 1H, Ar–H), 7.51 (s, 1H, Ar–H), 7.60 (d,
2H, Ar–H), 7.93 (d, 2H, Ar–H), 8.57 (s, 1H, –CH@N–),
1
2.89 (br s, 1H, –CO
2
H), 14.41 (br s, 1H, –OH). HRMS
+
(
EI, m/z) M = 673.3341 (Calcd for C H N O =
4
2
46
2
6
6
7
74.3356). Elemental Anal. Calcd for C42
H
46
N
2
O
6
: C,
4.75; H, 6.87; N, 4.15. Found: C, 74.39; H, 6.81; N, 4.15.
1
References and notes
5
Compound 4B: H NMR (pyridine-d ): d 1.55 (d, 9H,
–
C(CH ) ), 1.38–1.95 (br m, 8H, –CH –), 3.41 (br m, 2H,
3 3 2
1
. Larrow, J. R.; Jacobsen, E. N. Top. Organomet. Chem.
004, 6, 123–152.
–CH–), 7.11 (d, 1H, Ar–H), 7.54 (m, 3H, Ar–H), 7.69 (m,
1H, Ar–H), 8.30 (m, 1H, Ar–H), 8.40 (dd, 1H, Ar–H), 8.59
(s, 1H, –CH@N–), 8.60 (s, 1H, –CH@N–), 8.79 (d, 1H,
2
2
. Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421–431.
. Yoon, T. P.; Jacobsen, E. N. Science 2003, 299, 1691–
3
Ar–H), 8.82 (d, 1H, Ar–H), 14.40 (br s, 1H, –CO H),
2
1
693.
14.79 (s, 1H, –OH), 14.82 (s, 1H, –OH). MS (ESI, m/z):
ꢀ
4
. Cho, S. H.; Ma, B. Q.; Nguyen, S. T.; Hupp, J. T.;
Albrecht-Schmitt, T. E. Chem. Commun. 2006, 2563–2565.
. Gianneschi, N. C.; Bertin, P. A.; Nguyen, S. T.; Mirkin, C.
A.; Zakharov, L. N.; Rheingold, A. L. J. Am. Chem. Soc.
[MꢀH] = 498.64 (Calcd for C30
H
32
N
Æ1/4H
3
O
4
= 498.24). Ele-
O: C, 71.48; H,
mental Anal. Calcd for C30
H
33
N
O
3
4
2
5
6.70; N, 8.34. Found: C, 71.42; H, 6.54; N, 8.78.
1
Compound 4C: H NMR (pyridine-d
5
): d 1.57 (s, 9H,
2003, 125, 10508–10509.
–C(CH ), 1.37–1.88 (br m, 8H, –CH –), 3.40 (br m, 2H,
3
)
3
2
6
7
8
9
. Gianneschi, N. C.; Cho, S. H.; Nguyen, S. T.; Mirkin, C.
A. Angew. Chem., Int. Ed. 2004, 43, 5503–5507.
. Bradshaw, D.; Claridge, J. B.; Cussen, E. J.; Prior, T. J.;
Rosseinsky, M. J. Acc. Chem. Res. 2005, 38, 273–282.
. Rowsell, J. L. C.; Yaghi, O. M. Microporous Mesoporous
Mater. 2004, 73, 3–14.
–CH–), 7.41 (d, 1H, Ar–H), 7.52 (dd, 2H, Ar–H), 7.59 (d,
1H, Ar–H), 7.71 (d, 1H, Ar–H), 7.86 (d, 1H, Ar–H), 8,11
(s, 1H, Ar–H), 8.55 (s, 1H, –CH@N–), 8.59 (s, 1H,
–CH@N–), 8.78 (dd, 2H, Ar–H), 13.79 (br s, 1H, –CO
2
H),
ꢀ
14.80 (br s, 1H, –OH). MS (ESI, m/z): [MꢀH] = 498.41
(Calcd for C30
for C30
H
32
N
Æ1/4H
3
O
4
= 498.24). Elemental Anal. Calcd
. Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.;
Eddaoudi, M.; Kim, J. Nature 2003, 423, 705–714.
H
33
N
3
O
4
2
O: C, 71.48; H, 6.70; N, 8.34.
1
Found: C, 71.45; H, 6.67; N, 8.41. Compound 4D:
NMR (DMSO-d ): d 1.33 (s, 18H, –C(CH
(br m, 8H, –CH –), 3.42 (br s, 2H, –CH–), 7.36-8.04 (m,
10H, Ar–H), 8.54 (br m, 2H, –CH@N–, 2H, Ar–H), 12.99
(br s, 2H, –CO H), 14.36 (br s, 2H, –OH). HRMS (EI,
H
1
0. Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y.
J.; Kim, K. Nature 2000, 404, 982–986.
1. Kim, G. J.; Shin, J. H. Catal. Lett. 1999, 63, 83–90.
2. Renehan, M. F.; Schanz, H. J.; McGarrigle, E. M.;
Dalton, C. T.; Daly, A. M.; Gilheany, D. G. J. Mol. Catal.
A: Chem. 2005, 231, 205–220.
6
) ), 1.67–1.95
3 3
2
1
1
2
+
m/z): M = 673.3356 (Calcd for C42
H
46
N
2
O
6
= 674.3356).
Elemental Anal. Calcd for C42
H
46
N
2
O
6
: C, 74.75; H, 6.87;
1
1
1
3. Campbell, E. J.; Nguyen, S. T. Tetrahedron Lett. 2001, 42,
N, 4.15. Found: C, 74.37; H, 6.81; N, 4.56. Compound 4E:
1
1221–1225.
H NMR (DMSO-d
1.94 (br m, 8H, –CH
(br m, 8H, Ar–H), 7.94 (br d, 2H, Ar–H), 8.51 (br m, 2H,
–CH@N–, 2H, Ar–H), 12.95 (br s, 1H, –CO H), 14.38 (br
s, 1H, –OH), 14.51 (br s, 1H, –OH). HRMS (EI, m/z):
): d 1.32 (s, 18H, –C(CH
6
) ), 1.66–
3 3
4. Holbach, M.; Zheng, X. L.; Burd, C.; Jones, C. W.; Weck,
2
–), 3.35 (br m, 2H, –CH–), 7.48–7.60
M. J. Org. Chem. 2006, 71, 2903–2906.
5. A mixture of (1R,2R)-(ꢀ)-1,2-diaminocyclohexane
1
2
(
0.16 g, 1.37 mmol) and 4-(3-hydroformyl-4-hydroxy-5-t-
+
butylphenyl)benzoic acid 2A (0.40 g, 1.34 mmol) in meth-
anol (50 mL) was heated to reflux for 1 h. The resulting
precipitate was filtered and washed with hot methanol
M = 631.3414 (Calcd for C40
H
N
45
N
3
O
4
= 631.3410). Ele-
mental Anal. Calcd for C40
H
45
3
O
4
Æ1/2H O: C, 74.97; H,
2
7.24; N, 6.56. Found: C, 74.82; H, 7.00; N, 6.516.
18. The free base ligand 4E (0.20 g, 0.31 mmol) and
Mn(OAc) Æ4H O (0.086 g, 0.35 mmol) were combined
with absolute EtOH (50 mL) and heated to reflux for 2 h
under N atmosphere. LiCl (0.041 g, 0.97 mmol) was then
(
ꢁ50 ꢁC, 3 · 10 mL) and dried under vacuum to give a
pale yellow solid 3A (0.51 g, 95%).
2
2
1
22 2 5
6. Selected X-ray crystallographic data of 3C: C14H N O ,
˚
monoclinic,
space
group
C2,
a = 21.208(5) A,
2
˚
˚
b = 5.9408(13) A, c = 12.526(3) A, b = 105.933(4)ꢁ, V =
added and the resulting solution was refluxed for an
additional hour in air before being cooled to room
temperature. The solvent was removed under reduced
˚
3
1
517.5(6) A , Z = 4.
A colorless plate type crystal
was used to measure 6922 reflections at T = 153 K, of