quantifying superoxide anions generated in biological systems. To
our knowledge, this is the first experiment where ROR were
detected from intact mitochondria by using the EPR spin-trapping
technique.
The authors would like to thank Professor N. G. Avadhani
and Dr S. Srinivasan for supplying mitochondria. This work was
supported by National Institutes of Health grant HL07305-1 and
Hungarian National Research Fund OTKA T-046953.
Notes and references
1
Free Radical in Biology and Medicine, ed. B. Halliwell and J. M.
Gutteridge, Oxford University Press, Oxford, 1999; T. Finkel and
N. J. Holbrook, Nature, 2000, 408, 239.
2
3
S. Macip, A. Kosoy, S. W. Lee, M. J. O’Connell and S. A. Aaronson,
Oncogene, 2006, 25, 6037; B. Halliwell, Drugs Aging, 2001, 18(9), 685.
Electron Spin Resonance, ed. B. C. Gilbert, M. J. Davies and D. M.
Murphy, The Royal Society of Chemistry, Cambridge, 2002;
F. A. Villamena and J. L. Zweier, Antioxid. Redox Signaling, 2004,
6(3), 619.
4
5
E. G. Janzen, Acc. Chem. Res., 1971, 4, 31; R. P. Mason, P. M. Hanna,
M. J. Burkitt and M. B. Kadiiska, Environ. Health Perspect., 1994,
102(Suppl. 10), 33; N. Khan, C. M. Wilmot, G. M. Rosen,
Fig. 2 Spin-trapping from intact mitochondria: (a) EPR spectrum
obtained in the presence of isolated mitochondria (200 mg of proteins)
with Mito-DEPMPO 7 (50 mM) in phosphate buffer, pH 7.3 after 20 min
of incubation and then adding succinate (100 mM) at 37 uC; (b) as in (a)
but with DEPMPO (50 mM); (c) as in (a) but without succinate; (d) as
in (b) but without succinate. The gray lines represent the computer
simulations of the spectra.
E. Demidenko, J. Sun, J. Joseph, J. O’Hara, B. Kalyanaraman and
H. M. Swartz, Free Radical Biol. Med., 2003, 34(11), 1473.
C. Fr e´ javille, H. Karoui, B. Tuccio, F. Le Moigne, M. Culcasi, S. Pietri,
R. Lauricella and P. Tordo, J. Chem. Soc., Chem. Commun., 1994, 1793;
C. Fr e´ javille, H. Karoui, B. Tuccio, F. Le Moigne, M. Culcasi, S. Pietri,
R. Lauricella and P. Tordo, J. Med. Chem., 1995, 38, 258; K. J. Liu,
M. Miyake, T. Panz and H. Swartz, Free Radical Biol. Med., 1999,
26(5/6), 714.
G. Olive, A. Mercier, F. Le Moigne, A. Rockenbauer and P. Tordo,
6
DEPMPO/OOH and DMPO/OOH adducts respectively.
Moreover, the initial concentration of Mito-DEPMPO/OOH is
significantly higher than that of DEPMPO/OOH, suggesting a
higher affinity of the superoxide anions for the Mito-DEPMPO
trap. Further work will be reported in due course to confirm the
role of the positively charged triphenylphosphonium group that
would facilitate the electrostatic guidance of the anionic superoxide
radical towards the spin trap, leading to an increase in the
superoxide trapping rate. It is noteworthy that many studies on
Cu, Zn-superoxide dismutase (Cu, Zn-SOD) have revealed that
cationic residues close to the active site play a key role in enhancing
Free Radical Biol. Med., 2000, 28(3), 403.
7 H. Zhao, J. Joseph, H. Zhang, H. Karoui and B. Kalyanaraman, Free
Radical Biol. Med., 2001, 31(5), 599.
8
H. Karoui, A. Rockenbauer, S. Pietri and P. Tordo, Chem. Commun.,
002, 24, 3030.
2
9 F. Chalier, O. Ouari and P. Tordo, Org. Biomol. Chem., 2004, 2, 927;
O. Ouari, A. Polidori, B. Pucci, P. Tordo and F. Chalier, J. Org. Chem.,
1999, 64, 3554; O. Ouari, F. Chalier, R. Bonaly, B. Pucci and P. Tordo,
J. Chem. Soc., Perkin Trans. 2, 1998, 2299.
1
0 R. A. J. Smith, C. M. Porteous, A. M. Gane and M. P. Murphy,
Proc. Natl. Acad. Sci. U. S. A., 2003, 100(9), 5407; M. P. Murphy,
K. S. Echtay, F. H. Blaikie, J. Asin-Cayuela, H. M. Cocheme, K. Green,
J. A. Buckingham, E. R. Taylor, F. Hurrell, G. Hughes, S. Miwa,
C. E. Cooper, D. A. Svistunenko, R. A. J. Smith and M. D. Brand,
J. Biol. Chem., 2003, 278(49), 48 534.
17
the dismutase activity.
Preliminary experiments were performed with isolated
11 A. Hay, M. J. Burkitt, C. M. Jones and R. C. Hartley, Arch. Biochem.
Biophys., 2005, 435, 336.
1
8
mitochondria from RAW 264.7 cells in the presence of Mito-
DEPMPO 7 or DEPMPO (Fig. 2). In the presence of Mito-
DEPMPO, we observed a mixture of superoxide (45%), hydroxyl
12 Y. P. Liu, Y. Q. Ji, Y. G. Song, K. J. Liu, B. Liu, Q. Tian and Y. Liu,
Chem. Commun., 2005, 4943.
1
3 N. M. Green, Methods Enzymol., 1990, 184, 51; Avidin-Biotin
Technology, ed. M. Wilchek, E. A. Bayer, Academic Press, San Diego,
1990, vol. 184; A. Dhanasekaran, S. Kotamraju, C. Karunakara,
S. V. Kalivendi, S. Thomas, J. Joseph and B. Kalyanaraman, Free
Radical Biol. Med., 2005, 39(5), 567.
(18%) and alkyl adducts (35%) when succinate was added for the
activation of the Electron Transport Chain (ETC). However, in
the presence of DEPMPO, we did not detect any superoxide
adduct; only a weak signal from the hydroxyl adduct was observed
1
4 M. T. Lin and M. F. Beal, Nature, 2006, 443, 787; G. M. Leinningen,
J. L. Edwards, M. J. Lipshaw and E. L. Feldman, Nat. Clin. Pract.
Neurol., 2006, 2, 620.
[Fig. 2(b)]. In the absence of succinate, a significant decrease
for both spectra was observed suggesting that the trapping of
ROS is succinate-dependent and that they come from isolated
mitochondria [Fig. 2(c) and 2(d)]. These results indicate that
Mito-DEPMPO and not DEPMPO is able to trap superoxide
formed in mitochondria.
1
5 M. Hardy, F. Chalier, J. P. Finet, A. Rockenbauer and P. Tordo, J. Org.
Chem., 2005, 70(6), 2135; M. Hardy, O. Ouari, L. Charles, J. P. Finet,
G. Iacazio, V. Monnier, A. Rockenbauer and P. Tordo, J. Org. Chem.,
2
005, 70(25), 10 426.
16 A. Rockenbauer and L. Korecz, Appl. Magn. Reson., 1996, 10, 29.
7 A. Cudd and I. Fridovich, J. Biol. Chem., 1982, 257, 11443; L. Banci,
I. Bertini, J. D. Bauer, R. A. Hallewell and M. S. Viezzolit, Biochemistry,
993, 32, 4384.
8 S. K. Prabu, H. K. Anandatheerthavarada, H. Raza, S. Srinivasan,
1
In summary, NHS-DEPMPO is a versatile precursor for the
preparation and targeting of a site-directed DEPMPO-based spin
trap. Owing to its increased affinity for superoxide anions, Mito-
DEPMPO may become the trap of choice for detecting and
1
1
J. F. Spear and N. G. Avadhani, J. Biol. Chem., 2006, 281, 2061.
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 1083–1085 | 1085