SCHEME 1
Selective Synthesis of
2,3-Disubstituted-2H-isoindol-1-ylphosphonate
and 2,3-Disubstituted-1,2-dihydroiso-
quinolin-1-ylphosphonate via Metal-Tuned
Reaction of r-Amino
(2-Alkynylphenyl)methylphosphonate
Qiuping Ding,† Yang Ye,† Renhua Fan,*,† and Jie Wu*,†,‡
Department of Chemistry, Fudan UniVersity, 220 Handan Road,
Shanghai, 200433, People’s Republic of China, and State Key
Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin
Road, Shanghai 200032, People’s Republic of China
of phosphatase activity.6 On the other hand, recent studies have
indicated that a number of heterocycle analogues containing
phosphorus showed excellent bioactivities. For example, phos-
phacoumarins showed good inhibitory activity against SHP-1.7
In light of our interest in R-amino phosphonates and natural
product-like compounds, we required an efficient method to
generate R-amino phosphonate based scaffolds and its focused
library, with a hope of finding more active hits or leads for our
particular biological assays.8 Herein, we would like to disclose
our preliminary results for the synthesis of 2,3-disubstituted-
2H-isoindol-1-ylphosphonate 2 or 2,3-disubstituted-1,2-dihy-
droisoquinolin-1-ylphosphonate 3 from R-amino (2-alkynylphe-
nyl)methylphosphonate 1 under metal-tuned conditions (Scheme
1)
ReceiVed April 5, 2007
Palladium(II)-catalyzed reaction of R-amino (2-alkynylphe-
nyl)methylphosphonate provides a novel and efficient route
to 2,3-disubstituted-2H-isoindol-1-ylphosphonate via 5-exo-
cyclization and [1,5]-H shift; while 2,3-disubstituted-1,2-
dihydroisoquinolin-1-ylphosphonate is afforded through 6-en-
do-cyclization utilizing silver triflate as catalyst.
It is well-known that the transition metal- or Lewis acid-
catalyzed cyclization of alkynes possessing a nucleophile in
proximity to the triple bond is an important process in organic
synthesis, which can construct various heterocycles in an
efficient and atom-economic way.9-15 Over the past few years,
(6) Beers, S. A.; Schwender, C. F.; Loughney, D. A.; Malloy, E.;
Demarest, K.; Jordan, J. Bioorg. Med. Chem. 1996, 4, 1693.
(7) Li, X. S.; Zhang, D. W.; Pang, H.; Shen, F.; Fu, H.; Jiang, Y. Y.;
Zhao, Y. F. Org. Lett. 2005, 7, 4919.
(8) (a) Wu, J.; Yang, Z.; Fathi, R.; Zhu, Q.; Wang, L. U.S. Patent No.
6,703,514. (b) Wu, J.; Yang, Z.; Fathi, R.; Zhu, Q. U.S. Pat. Appl. Publ.
2004, 43 pp.
Organophosphorus compounds continue to receive wide-
spread attention due to their ubiquity in biological systems.1,2
Among these, in particular, R-amino phosphonic acids, their
phosphonate esters, and short peptides incorporating this unit
have attracted considerable focus since they are excellent
inhibitors of a wide range of proteolytic enzymes.3 In addition,
R-amino phosphonate derivatives have broad application due
to their antibacterial4 and antifungal5 activity, and as inhibitors
(9) (a) Ma, C.; Liu, X.; Li, X.; Flippen-Anderson, J.; Yu, S.; Cook, J.
M. J. Org. Chem. 2001, 66, 4525. (b) Kondo, T.; Okada, T.; Suzuki, T.;
Mitusudi, T.-a. J. Organomet. Chem. 2001, 622, 149. (c) Muller, T. E.;
Berger, M.; Grosche, M.; Herdtweck, E.; Schmidtchen, F. P. Organome-
tallics 2001, 20, 4384. (d) Xu, L.; Lewis, I. R.; Davidsen, S. K.; Summers,
J. B. Tetrahedron Lett. 1998, 39, 5159. (e) Yu, M. S.; de Leon, L. L.;
McGuire, M. A.; Botha, G. Tetrahedron Lett. 1998, 39, 9347. (f) Mahanty,
J. S.; De, M.; Das, P.; Kundu, N. G. Tetrahedron 1997, 53, 13397. (g)
Cacchi, S.; Carnicelli, V.; Marinelli, F. J. Organomet. Chem. 1994, 475,
289. (h) Arcadi, A.; Cacchi, S.; Marinelli, F. Tetrahedron Lett. 1989, 30,
2581. (i) Utimoto, K.; Miwa, H.; Nozaki, H. Tetrahedron Lett. 1981, 22,
4277.
(10) (a) Van Esseveldt, B. C. J.; van Delft, F. L.; de Gelder, R.; Rutjes,
F. P. J. T. Org. Lett. 2003, 5, 1717. (b) Kozawa, Y.; Mori, M. Tetrahedron
Lett. 2002, 43, 1499. (c) Torres, J. C.; Pilli, R. A.; Vargas, M. D.; Violante,
F. A.; Garden, S. J.; Pinto, A. C. Tetrahedron 2002, 58, 4487. (d) Sashida,
H.; Kawamukai, A. Synthesis 1999, 1145. (e) Kobayashi, Y.; Fukuyama,
T. J. Heterocycl. Chem. 1998, 35, 1043. (f) McDonald, F. E.; ChatterJee,
A. K. Tetrahedron Lett. 1997, 38, 7687. (g) Khan, M. W.; Kundu, N. G.
Synlett 1997, 12, 1435. (h) Ohe, K.; Ishihara, T.; Chatani, N.; Kawasaki,
Y.; Murai, S. J. Org. Chem. 1991, 56, 2267. (i) NagaraJan, A.; Balasubra-
manian, T. R. Indian J. Chem., Sect. B 1989, 28, 67. (j) Sakamoto, T.;
Kondo, Y.; Iwashita, S.; Nagano, T.; Yamanaka, H. Chem. Pharm. Bull.
1988, 36, 1305. (k) Taylor, E. C.; Katz, A. H.; Salgado-Zamora, H.;
McKillop, A. Tetrahedron Lett. 1985, 26, 5963.
† Fudan University.
‡ Chinese Academy of Sciences.
(1) (a) Westheimer, F. H. Science 1987, 235, 1173. (b) Seto, H.;
Kuzuyama, T. Nat. Prod. Rep. 1999, 16, 589.
(2) For examples of phosphorus compounds as pharmaceuticals, see: (a)
Kafarski, P.; LeJczak, B. Curr. Med. Chem.: Anti-Cancer Agents 2001, 1,
301. (b) Colvin, O. M. Curr. Pharm. Des. 1999, 5, 555. (c) Zon, G. Prog.
Med. Chem. 1982, 19, 205. (d) Stec, W. J. Organophosphorus Chem. 1982,
13, 145. (e) Mader, M. M.; Bartlett, P. A. Chem. Rev. 1997, 97, 1281. (f)
Kafarski, P.; LeJczak, B. Phosphorus, Sulfur Silicon Relat. Elem. 1991,
63, 193.
(3) For reviews of the biological activity of R-amino phosphonic acids,
see: (a) Hiratake, J.; Oda, J. Biosci. Biotechnol. Biochem. 1997, 61, 211.
(b) Kafarski, P.; Lejczak, B. Phosphorus, Sulfur, Silicon 1991, 63, 193.
For a fM inhibitor of carboxypeptidase A, see: (c) Kaplan, A. P.; Bartlett,
P. A. Biochemistry 1991, 30, 8165.
(4) (a) Allen, J. G.; Atherton, F. R.; Hall, M. J.; Hassall, C. H.; Holmes,
S. W.; Lambert, R. W.; Nisbet, L. J.; Ringrose, P. S. Nature 1978, 272, 56.
(b) Pratt, R. F. Science 1989, 246, 917.
(5) Maier, L.; Diel, P. J. Phosphorus, Sulfur, Silicon 1991, 57, 57.
10.1021/jo070716d CCC: $37.00 © 2007 American Chemical Society
Published on Web 06/09/2007
J. Org. Chem. 2007, 72, 5439-5442
5439