´
O. Roche, R. M. Rodrıguez Sarmiento / Bioorg. Med. Chem. Lett. 17 (2007) 3670–3675
3674
the amides 15 or 16. In both cases removal of the THP
and O-alkylation with an appropriate alkylating agent
gave compounds 17 or 18. Reduction of the amide
group on 17 or 18 to the corresponding amines using
borane–tetrahydrofuran complex gives reasonable yields
except on compounds for type 17 when a benzyl or
methyl group is present (R = OCH2Ar and R = Me).
An alternative way to obtain the desired amine 2 was
through the reduction of compound 15, using LiAlH4.
Removal of the THP group under acidic conditions
gives the phenol 19 that can be alkylated with K2CO3
and the corresponding halogenated group. The com-
pounds synthesized by this route (Scheme 2) are exem-
plified in Table 2.
work possible and so enjoyable, especially Dr. Silvia.
Gatti McArthur, Sandra Grall-Ulsemer, Regine Denu,
Dr. Harald Mauser, Dr. Wolfgang Guba, and Dr. M.
Nettekoven.
References and notes
1. Sneader, W. Drug News Perspect. 2001, 14, 618.
2. Hough, L. B. Mol. Pharmacol. 2001, 59, 415.
3. Thurmond, R. L.; Desai, P. J.; Dunford, P. J.; Fung-
Leung, W.-P.; Hofstra, C. L.; Jiang, W.; Nguyen, S.;
Riley, J. P.; Sun, S.; Williams, K. N.; Edwards, J. P.;
Karlsson, L. J. Pharmacol. Exp. Ther. 2004, 309, 404.
4. Arrang, J. M.; Garbarg, M.; Schwartz, J. C. Neuroscience
1987, 23, 149.
The H3 activities presented in Tables 1 and 2 are binding
data measured by displacement of [3H](R)-a-methylhis-
tamine (RAMH).30 For selected compounds, human
H1 and H2 subtype affinity has been measured using
[3H]pyrilamine and [3H]tiotidine, respectively (see
Tables 1 and 2).31 The SAR explored by the molecules
shown in these tables validate the new pharmacophore
model since compounds 1e, 1f, and 2a–2d carrying 2
basic centers and a lipophilic substituent altogether are
highly active at the H3 receptor. When we remove the
distal basic amine in compounds 1a–1d, potentially
interacting with ASP3.32, the activity at the H3 receptor
is completely lost. For the molecules 18a, 17b, 17e, and
17g where the proximal basic center has been eliminated
by generating the amide, part of activity can be con-
served. Especially, compounds 17b and 17g have a Ki
of 42 and 12 nM at the H3 subtype, respectively. From
our results, it is likely that both the proximal basic nitro-
gen and the carbonyl oxygen of the amide bond interact
with the same residue. A potential candidate residue for
this type of interaction could be Glu5.46, which can be
both a hydrogen bond donor (carbonyl, 17g) and accep-
tor (basic amine, 2d).
5. Schlicker, E.; Kathmann, M. In The Histamine H3
Receptor; a Target for New Drugs; Leurs, R., Timmerman,
H., Eds., 1st ed.; Elservier Science B.V.: Amsterdam, 1998;
pp 13–26.
6. Stark, H. Expert Opin. Ther. Pat. 2003, 13, 851.
7. Leurs, R.; Blandina, P.; Tedford, C.; Timmerman, H.
Trends Pharmacol. Sci. 1998, 19, 177.
8. Rouleau, A.; Ligneau, X.; Tardivel-Lacombe, J.; Morisset,
S.; Gbahou, F.; Schwartz, J. C.; Arrang, J. M. Brit.
J. Pharmacol. 2002, 135, 383.
9. Takahashi, K.; Tokita, S.; Kotani, . J. Pharmacol. Exp.
Ther. 2003, 307, 213.
10. Witkin, J. M.; Nelson, D. L. Pharmacol. Therapeut. 2004,
103, 1.
11. Alguacil, L. F.; Perez-Garcia, C. Curr. Drug Targets CNS
Neurol. Disord. 2003, 2, 303.
12. Hancock, A. A.; Brune, M. E. Expert Opin. Invest. Drugs
2005, 14, 223.
13. Hancock, A. A. Curr. Opin. Invest. Drugs 2003, 4, 1190.
14. Yang, R.; Hey, J. A.; Aslanian, R.; Rizzo, C. A.
Pharmacology 2002, 66, 128.
15. Rivara, S.; Mor, M.; Bordi, F.; Silva, C.; Zuliani, V.;
Vacondio, F.; Morini, G.; Plazzi, P. V.; Carrupt, P.-A.;
Testa, B. Drug Des. Discov. 2003, 18, 65.
16. Yao, B. B.; Hutchins, C. W.; Carr, T. L.; Cassar, S.;
Masters, J. N.; Bennani, Y. L.; Esbenshade, T. A.;
Hancock, A. A. Neuropharmacology 2003, 44, 773.
17. Stark, H.; Sippl, W.; Ligneau, X.; Arrang, J. M.; Ganellin,
C. R.; Schwartz, J. C.; Schunack, W. Bioorg. Med. Chem.
Lett. 2001, 11, 951.
18. De Esch, I. J.; Mills, J. E.; Perkins, T. D.; Romeo, G.;
Hoffmann, M.; Wieland, K.; Leurs, R.; Menge, W. M.;
Nederkoorn, P. H.; Dean, P. M.; Timmerman, H. J. Med.
Chem. 2001, 44, 1666.
19. De Esch, I. J. P.; Timmerman, H.; Menge, W. M. P. B.;
Nederkoorn, P. H. J. Arch. Pharm. (Weinheim, Germany)
2000, 333, 254.
20. Apodaca, R.; Dvorak, C. A.; Xiao, W.; Barbier, A. J.;
Boggs, J. D.; Wilson, S. J.; Lovenberg, T. W.; Carruthers,
N. I. J. Med. Chem. 2003, 46, 3938.
21. Faghih, R.; Dwight, W.; Bao Pan, J.; Fox, G. B.; Krueger,
K. M.; Esbenshade, T. A.; McVey, J. M.; Marsh, K.;
Bennani, Y. L.; Hancock, A. A. Bioorg. Med. Chem. Lett.
2003, 13, 1325.
22. Cowart, M.; Pratt, J. K.; Stewart, A. O.; Bennani, Y. L.;
Esbenshade, T. A.; Hancock, A. A. Bioorg. Med. Chem.
Lett. 2004, 14, 689.
From the potent compounds 1e, 1f, 17b tested against
human H1 and H2 receptors we confirmed that our series
are selective for the H3 subtype. The most promising
compound 1f has been further profiled in terms of func-
tionality and species selectivity. It has been tested in a
GTPcS functional assay and was found to be a potent
inverse agonist with an EC50 of 0.2 nM. Moreover, 1f
also displays a high affinity toward the rat H3 receptor
with a Ki of 9.8 nM qualifying the molecule for further
in vivo experiments. Preliminary safety data show that
1f does not block the hERG channel.32
In conclusion, applying a new pharmacophore model,
we have discovered highly potent and selective inverse
agonists for both human and rat H3 receptors. In this
study, we have exemplified only one of the connection
patterns proposed by Skelgen. Based on these promising
results, other chemotypes will be explored.
23. Keith, J. M.; Gomez, L. A.; Letavic, M. A.; Ly, K. S.;
Jablonowski, J. A.; Seierstad, M.; Barbier, A. J.; Wilson,
S. J.; Boggs, J. D.; Fraser, I. C.; Mazur, C.; Lovenberg, T.
W.; Carruthers, N. I. Bioorg. Med. Chem. Lett. 2007, 17,
702.
Acknowledgments
It is with real pleasure that we wish to thank all our col-
laborators whose contributions made the described