Core-Tetrasubstituted Naphthalene Diimides
oligonaphthalene diimide rods, exhibiting halide selectivity.9
Naphthalene diimide organogels were built by noncovalent
interactions such as π-π stacking, hydrogen bonding, and van
der Waals forces which serve as supramolecular hosts and
sensors for different types of electron-rich naphthalene com-
pounds.1 Moreover, due to their charge-transfer interaction with
alkoxy-substituted naphthalenes, NDIs are applicable in flexible
foldable polymers forming a stacked charge transfer (CT)
transistors.16 Very recently, we have reported the first examples
of core-trisubstituted NDI derivatives, such as compound 3
(Chart 1), which show intense color and high fluorescence
1
7
quantum yield.
Core-di- and -trisubstituted NDIs are accessible from 2,6-
dichloronaphthalene dianhydride by imidization with primary
amines, followed by substitution of the chlorine atoms at the
0
12,17,18
naphthalene core.
In the past 2 years, several groups have
11
donor-acceptor structure.
also used 2,6-dibromonaphthalene dianhydride as precursor for
12c,16,19
core-disubstituted NDIs.
Two bromine substituents were
Functionalization of NDIs by core substitution triggered an
eminent progress in controlling the optical and redox properties
of this class of dyes and thus extended the scope of application.
NDIs bearing two electron-donating core substituents, such as
NDI 2 (Chart 1), have been previously synthesized by our group
introduced at the naphthalene core of 1,4,5,8-naphthalenetetra-
carboxylic acid dianhydride by electrophilic aromatic substitu-
tion under different reaction conditions. Application of a
stoichiometric amount of dibromoisocyanuric acid (DBI) in
oleum (20% SO3) at room temperature afforded a mixture
consisting of mainly 2,6-dibromonaphthalene dianhydride and
small amounts of 2-monobromo and 2,3,6-tribromo compounds,
1
2
that show highly brilliant colors and strong fluorescence.
Their interesting electronic properties arise from a new CT
transition in the visible wavelength range, which is strongly
influenced by the electron-donating strength of the core sub-
stituents. Such core-substituted NDIs have attracted interest as
light-harvesting chromophores in self-assembled artificial an-
tenna systems,13 and they have been used to drive a transmem-
brane proton gradient caused by a photoinitiated electron-transfer
12c
along with some unreacted naphthalene dianhydride. Alter-
natively, bromine has been used as a bromination agent in the
presence of catalytic amounts of iodine using oleum as a solvent
16
resulting mainly in desired dibrominated product. Recently,
it has been reported that quantitative and selective formation
of 2,6-dibromonaphthalene dianhydride can be achieved using
1
4
cascade. One potential future application of NDIs with
electron-donating core substituents might be the optically
triggered transport of currents on the molecular scale in metal-
NDI hybrid setups.15 Recently a core-dicyanated electron-
deficient NDI derivative has been reported, which provided high
mobility, air-stable, n-type transparent organic field-effect
19
DBI in concentrated sulfuric acid at 130 °C.
Although a broad variety of core-di- and -trisubstituted NDIs
can be synthesized starting from 2,6-dichloro- or 2,6-dibro-
monaphthalene dianhydride, to our knowledge, no route to NDIs
bearing four electron-donating substituents at the naphthalene
core has been reported in the literature. To complete the highly
interesting series of core-di- and -trisubstituted NDIs, we chose
2,3,6,7-tetrabromonaphthalene dianhydride 4 as a precursor. It
had been reported in the Russian literature that compound 4
was observed as a mixture with other brominated products in
bromination of naphthalene dianhydride with bromine, but no
procedure for the isolation and purification of 4 was given.20
Here we report a highly efficient method for the synthesis of
pure 2,3,6,7-tetrabromonaphthalene dianhydride 4. The latter
has been used as a starting material for the synthesis of
tetrabromo-substituted NDI 5 which was disclosed in a patent
shortly before our work was submitted for publication.21 NDI
5 was reacted in good yields with oxygen, nitrogen, and sulfur
nucleophiles to give NDIs bearing four electron-donating core-
(
2) (a) Hasharoni, K.; Levanon, H.; Greenfield, S. R.; Gosztola, D. J.;
Svec, W. A.; Wasielewski, M. R. J. Am. Chem. Soc. 1995, 117, 8055-
056. (b) Greenfield, S. R.; Svec, W. A.; Gosztola, D.; Wasielewski, M.
8
R. J. Am. Chem. Soc. 1996, 118, 6767-6777. (c) Levanon, H.; Galili, T.;
Regev, A.; Wiederrecht, G. P.; Svec, W. A.; Wasielewski, M. R. J. Am.
Chem. Soc. 1998, 120, 6366-6373. (d) Lukas, A. S.; Bushard, P.;
Wasielewski, M. R. J. Phys. Chem. A 2002, 106, 2074-2082. (e) Kelley,
R. F.; Tauber, M. J.; Wasielewski, M. R. J. Am. Chem. Soc. 2006, 128,
4
(
2
779-4791. (f) Wasielewski, M. R. J. Org. Chem. 2006, 71, 5051-5066.
g) Flamingi, L.; Baranoff, E.; Collin, J.-P.; Sauvage, J.-P. Chem. Eur. J.
006, 12, 6592-6606.
3) (a) Hamilton, D. G.; Montalti, M.; Prodi, L.; Fontani, M.; Zanello,
(
P.; Sanders, J. K. M. Chem. Eur. J. 2000, 6, 608-617. (b) Kaiser, G.;
Jarrosson, T.; Otto, S.; Ng, Y.-F.; Bond, A. D.; Sanders, J. K. M. Angew.
Chem. 2004, 116, 1993-1996; Angew. Chem., Int. Ed. 2004, 43, 1959-
1
962. (c) Iijima, T.; Vignon, S. A.; Tseng, H.-R.; Jarrosson, T.; Sanders, J.
K. M.; Marchioni, F.; Venturi, M.; Apostoli, E.; Balzani, V.; Stoddart, J.
F. Chem. Eur. J. 2004, 10, 6375-6392. (d) Johnstone, K. D.; Bampos, N.;
Sanders, J. K. M.; Gunter, M. J. New J. Chem. 2006, 30, 861-867.
(12) (a) W u¨ rthner, F.; Ahmed, S.; Thalacker, C.; Debaerdemaeker, T.
Chem. Eur. J. 2002, 8, 4742-4750. (b) Thalacker, C.; Miura, A.; De Feyter,
S.; De Schryver, F. C.; W u¨ rthner, F. Org. Biomol. Chem. 2005, 3, 414-
422. (c) Thalacker, C.; R o¨ ger, C.; W u¨ rthner, F. J. Org. Chem. 2006, 71,
8098-8105.
(4) Lavin, J. M.; Shimizu, K. D. Chem. Commun. 2007, 228-230.
(5) Lee, H. N.; Xu, Z.; Kim, S. K.; Swamy, K. M. K.; Kim, Y.; Kim,
S.-J.; Yoon, J. J. Am. Chem. Soc. 2007, 129, 3828-3829.
(
6) (a) Takenaga, S.; Uto, Y.; Saita, H.; Yokoyama, M.; Kondo, H.;
(13) R o¨ ger, C.; M u¨ ller, M. G.; Lysetska, M.; Miloslavina, Y.; Holzwarth,
A. R.; W u¨ rthner, F. J. Am. Chem. Soc. 2006, 128, 6542-6543.
(14) Bhosale, S.; Sisson, A. L.; Talukdar, P.; F u¨ rstenberg, A.; Banerji,
N.; Vauthey, E.; Bollot, G.; Mareda, J.; R o¨ ger, C.; W u¨ rthner, F.; Sakai,
N.; Matile, S. Science 2006, 313, 84-86.
Wilson, W. D. Chem. Commun. 1998, 1111-1112. (b) Guelev, V.; Sorey,
S.; Hoffman, D. W.; Iverson, B. L. J. Am. Chem. Soc. 2002, 124, 2864-
2
865. (c) Gui, E.-L.; Li, L.-J.; Lee, P. S.; Lohani, A.; Mhaisalkar, S. G.;
Cao, Q.; Kang, S. J.; Rogers, J. A.; Tansil, N. C.; Gao, Z. Appl. Phys. Lett.
2
006, 89, 232104.
7) (a) Panto s¸ , G. D.; Pengo, P.; Sanders, J. K. M. Angew. Chem. 2007,
(15) Blaszczyk, A.; Fischer, M.; von H a¨ nisch, C.; Mayor, M. HelV. Chim.
Acta 2006, 89, 1986-2005.
(
1
19, 198-201; Angew. Chem., Int. Ed. 2007, 46, 194-197. (b) Panto s¸ , G.
(16) Jones, B. A.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R. Chem.
Mater. 2007, 19, 2703-2705.
D.; Wietor, J.-L.; Sanders, J. K. M. Angew. Chem. 2007, 119, 2288-2290;
Angew. Chem., Int. Ed. 2007, 46, 2238-2240.
(17) R o¨ ger, C.; Ahmed, S.; W u¨ rthner, F. Synthesis 2007, 1872-1876.
(18) Vollmann, H.; Becker, H.; Corell, M.; Streeck, H. Justus Liebigs
Ann. 1937, 531, 1-159.
(8) (a) Talukdar, P.; Bollot, G.; Mareda, J.; Sakai, N.; Matile, S. J. Am.
Chem. Soc. 2005, 127, 6528-6529. (b) Talukdar, P.; Bollot, G.; Mareda,
J.; Sakai, N.; Matile, S. Chem. Eur. J. 2005, 11, 6525-6532.
(19) Chaignon, F.; Falkenstr o¨ m, M.; Karlsson, S.; Blart, E.; Odobel, F.;
Hammarstr o¨ m, L. Chem. Commun. 2007, 64-66.
(9) Gorteau, V.; Bollot, G.; Mareda, J.; Perez-Velasco, A.; Matile, S. J.
Am. Chem. Soc. 2006, 128, 14788-14789.
(20) Solomatin, G. G.; Filippov, M. P.; Shigalevskii, V. A. Zh. Org.
Khim. 1981, 17, 877-879.
(10) Mukhopadhyay, P.; Iwashita, Y.; Shirakawa, M.; Kawano, S.; Fujita,
N.; Shinkai, S. Angew. Chem. 2006, 118, 1622-1625; Angew. Chem., Int.
(21) K o¨ nemann, M. (BASF AG), PCT Int. Appl. WO 2007074137A1,
2007. This patent was disclosed on July 5th, 2007 and describes the synthesis
of tetrabromo- and tetracyano-substituted naphthalene dianhydrides and
diimides and their application as n-type organic semiconductors.
Ed. 2006, 45, 1592-1595.
(
11) Ghosh, S.; Ramakrishnan, S. Angew. Chem. 2005, 117, 5577-5583;
Angew. Chem., Int. Ed. 2005, 44, 5441-5447.
J. Org. Chem, Vol. 72, No. 21, 2007 8071